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Abstract: Research examinations of changes in fetal heart rate (HR) to operationalize fetal memory
suggests that human memory capacities emerge in utero. However, there is little evidence for a form
of implicit memory or priming. The present aim was to determine if priming is evident in utero. Fetal
HR, maternal HR and maternal respiratory rate (RR) were examined in 105 women during the third
trimester of pregnancy. Women experienced two counterbalanced laboratory tasks, the Stroop task
and the paced breathing task, and their cardiorespiratory activity functioned as a stimulus for fetuses.
Repeated measures ANOVAs revealed maternal HR increased during the Stroop task but only when
the Stroop task was presented first (89.64 bpm to 92.39 bpm) (p = 0.04). Maternal RR increased during
the Stroop task, regardless of task order (17.72 bpm to 21.11 bpm; 18.50 bpm to 22.60 bpm) (p < 0.01).
Fetal HR increased during the paced breathing task, but only when it followed maternal exposure
to the Stroop task (141.13 bpm to 143.97 bpm) (p < 0.01). Fetuses registered maternal HR and RR
reactivity to the Stroop task, which influenced their response during maternal engagement with a
related task, suggesting priming. Further study of fetal memory may suggest another pathway by
which prenatal exposures impact future development.

Keywords: fetal development; memory; priming

1. Introduction

The establishment of memory represents a critical component of infant brain develop-
ment [1]. A growing body of literature suggests that memory capacities emerge in utero [2].
Implicit memory, defined as the unconscious activation of previous experiences to influ-
ence behavior, likely develops first and includes habituation, classical conditioning, and
priming. Explicit memory develops later and involves the conscious awareness of previous
experiences [3–5]. Research has utilized fetal heart rate (HR) to operationalize memory
in utero [6]. Habituation, defined as a decrease in attention or response after repeated
exposure, is established in fetuses by 30 weeks’ gestation [1,7]. Specifically, third-trimester
fetuses appear to register, recognize, and respond to varied stimuli measured by changes
in HR during habituation paradigms [7–11], though see DeCasper and Moon [12] for chal-
lenges to the interpretation that some of these results demonstrate fetal memory. Additional
work suggests that fetuses demonstrate auditory recognition memory for maternal voice
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measured using fetal HR. For example, third-trimester fetuses respond with an increase in
HR during recordings of their mothers’ voices and with a decrease in HR during recordings
of a female stranger’s voice [9]. Previous work has also used fetal movements to demon-
strate classical conditioning in utero, which occurs when an unconditioned stimulus and a
neutral stimulus result in the same response after repeated pairings of the stimuli have oc-
curred. During the third trimester, fetuses demonstrated classical conditioning by increased
fetal movement after repeated exposure to a paired vibration and loud noise [1,13,14].

While fetal HR and fetal movements have been established as markers of memory
in utero, few studies using these measures to investigate a third form of implicit memory,
priming, exist. Priming is evident when exposure to one stimulus results in a response
to a second stimulus that does not occur in the absence of exposure to the first. Research
has demonstrated a variety of priming effects in infants, toddlers, and school-age chil-
dren [15–18]. For example, infants at eighteen months of age exhibited sophisticated
priming capabilities. Specifically, infants who were primed with imagery suggesting
group affiliation demonstrated increased pro-social behavior on a subsequent task when
compared to infants unexposed to the imagery [19]. In a separate study, toddlers at age
twenty-one months looked longer at a target picture when the prime picture was semanti-
cally related [20]. Since priming as a form of implicit memory is crucial for attention and
learning, it is important to further investigate its development in utero.

The aim of the present study was to identify evidence of priming in utero using aspects
of a paradigm that we and others have developed over the past decade [21–24]. Women
in the third trimester of pregnancy engage in a set order of two standard laboratory tasks,
the Stroop color-word matching task and the paced breathing task, while maternal HR,
respiratory rate, and fetal HR are monitored. These laboratory tasks leverage the princi-
ple of cardiorespiratory coupling, which occurs under typical physiological conditions.
Cardiorespiratory coupling describes the effects of changes in respiration on both HR and
blood pressure [25]. Specifically, any increase in respiratory rate leads to an increase in
HR [26–28]. It is also established that changes in maternal respiratory rate and HR impact
the fetus, since fetuses react to alterations in their in utero environment [29]. For example,
increases in maternal HR in the setting of exercise lead to increases in fetal HR [30]. Both the
Stroop task and the paced breathing task are associated with maternal autonomic nervous
system (ANS) reactivity [31–33]. Our group as well as others have found that, on average,
fetuses do not have any HR change during the Stroop task [21,22,24]. However, on average,
fetuses respond with an increase in HR during the paced breathing task [23]. These results
are based on a uniform ordering of the tasks. In these studies, the Stroop task was presented
first followed by the paced breathing task, and conceptualized as a maternal task-based
cardiorespiratory activity that perturbs the in utero environment and elicits a change in
fetal HR.

To assess fetal priming in this study, we counterbalanced the task order. We hypothe-
sized that three distinct patterns in the fetus could emerge. First, the paced breathing task
may have unique qualities that elicit an increase in fetal HR. If this were in evidence, we
would expect to see an increase in fetal HR only during the paced breathing task regardless
of the task order. Second, there may be a cumulative effect of consecutive maternal ANS
reactivity tasks such that fetal HR increases in response to any second task. This would
be supported if fetal HR increases only during the second task, regardless of the task type.
Third, only one order of the tasks would lead to an increase in fetal HR during the second
task, indicating a priming effect from the first task.

2. Methods
2.1. Participants

Participants were part of a longitudinal study examining maternal and fetal epigenetic
modifications in the context of maternal prenatal stress (N = 152). The study was approved
by the institutional review board and written consent was obtained. Pregnant women ages
18–45 were recruited through the Department of Obstetrics and Gynecology at Columbia
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University Irving Medical Center. All women had a healthy singleton pregnancy at recruit-
ment. Participants were excluded if they acknowledged smoking tobacco or the use of
recreational drugs, or lacked fluency in English. Participants also were excluded if they
used the following: nitrates, steroids, beta blockers, triptans, and psychiatric medications.
Recruitment procedures allowed for enrollment in the first or second trimester.

The study design included three prenatal sessions; data used in the current analyses
came from the third session during the third trimester when women were 34–37 weeks
pregnant. Of the 152 women enrolled, 131 completed this session: nine (5.92%) were on
bedrest or delivered prior to the session and 12 (7.89%) missed the session or withdrew
from the study prior to it. An additional three participants (1.97%) completed the session
but their fetal data was of poor quality. Two participants (1.32%) did not have fetal data
collected due to equipment failure. The first 21 participants who enrolled in the study only
completed the Stroop task. These observations were not included in the analyses, though
sensitivity analyses show that our findings remain unchanged if these participants are
included. The final sample included 105 participants. This subsample did not differ from
the complete (N = 152) sample on any variables considered in the current study.

2.2. Procedures

During the third session, women reported demographic information and completed
the fetal and maternal monitoring. As described in detail in previous publications [23,34],
this process sees women recline in a semi-recumbent position while maternal and fetal
physiological signals including HR are monitored, and maternal ratings of each task’s stress
impact are measured. The session is divided into six periods: a 20 min resting baseline, a
5 min resting baseline, a 5 min Stroop task, a 6 min paced breathing task, and two separate
5 min recovery periods (interspersed between the two tasks). The current study used the
latter five periods, consistent with prior studies [21–23] (Figures 1 and 2).
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Figure 1. Overview of Study Procedures for Group 1.
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Figure 2. Overview of Study Procedures for Group 2.

During the Stroop task, women were presented with color words in either congruently-
or incongruently-colored letters and were asked to identify the color of the letters. A
computer-generated voice intoned a congruent or incongruent color and the experimenter
prompted participants to work faster. The paced breathing task requires women to control
their breath by inhaling when a bar on a computer screen rose and exhaling when it fell.
During the task, participants alternate breathing at a rate faster than typical (e.g., 30 bpm),
slower than typical (e.g., 10 bpm), and at an approximately typical rate for a pregnant
woman (e.g., 20 bpm). There was no voice prompt. Participants were randomly assigned to
undertake the Stroop (N = 51) or paced breathing task (N = 54) first, forming two groups
based on task presentation order.
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2.3. Measures

Demographic and Psychosocial Variables. Women reported on the following infor-
mation: age at enrollment, ethnicity, race, highest level of completed education (in years),
and the family’s annual income. Women reported their pre-pregnancy weight in pounds
and a research assistant measured each participant’s height. Using this information, stan-
dard calculation procedures were made to produce maternal pre-pregnancy body mass
index [35]. The child’s sex, gestational age (GA; in weeks), and weight (in grams) at birth
were obtained from medical records. GA at the fetal session (in weeks) was calculated by
comparing the date of fetal monitoring with the participant’s last menstrual period.

Fetal HR Monitoring. Fetal HR was acquired using a Toitu MT 325 fetal actocardio-
graph (Toitu Co., Ltd., Tokyo, Japan). The Toitu detects fetal HR via a single Doppler
transducer placed on a woman’s abdomen and processes this signal through a series of
filters. Fetal HR data were collected from the output port of the Toitu MT 325 fetal acto-
cardiograph and were digitized at 50 Hz using a 16-bit A/D card (National Instruments
16XE50). Data were analyzed offline using the custom MATLAB 8.3 scripts (The Mathworks
Inc., Natick, MA, USA) developed for our projects. A fetal HR below 80 or above 200 beats
per minute (bpm) was linearly interpolated and then low-pass filtered at three Hz using
a 16-point finite impulse response filter. The mean of the resulting fetal HR was taken
over non-interpolated values. Filtered fetal HR was further examined for artifacts in the
following way: times at which the absolute sample-to-sample (20 ms) change in fetal HR
exceeded five bpm were found, and fetal HR was marked as an artifact until it returned to
within five bpm of the previous value. The resultant gaps were linearly interpolated.

Maternal HR and Respiration Monitoring. Electrocardiogram electrodes (ECG) were
placed beneath the women’s left and right clavicles, with the ground located on the lower
right back. Analog ECG and respiration signals were digitized at 500 Hz and 50 Hz,
respectively, by a 16-bit A/D conversion board (National Instruments, Austin, TX, USA)
and passed to a microcomputer. The ECG waveform was submitted to an R-wave detection
routine implemented by custom-written software, resulting in an RR interval series. Ectopic
beats were corrected by interpolation. Mean HR was computed for each period in units of
bpm. For the respiration waveform, peaks and troughs were identified by custom-written
software and visually inspected for accuracy. Average breaths per minute were calculated
for each period.

Maternal Stress Ratings. Women were asked to report on a 10-point Likert-type scale
(where 1 = none at all and 10 = extreme stress) how stressed they felt at the end of each of
the key periods: the resting baseline, the Stroop task, and the paced breathing task [21,22].

2.4. Analytic Strategy

Independent samples t tests and chi-squared tests were used to examine whether the
two groups of participants (i.e., Stroop task first versus paced breathing task first) differed
on a number of variables that previous research has associated with fetal neurobehavioral
development: maternal age, ethnicity, race, education, family income, pre-pregnancy BMI,
child sex, GA and weight at birth, and GA at the fetal session. Changes in fetal HR,
maternal HR, maternal respiratory rate, and maternal stress ratings were tested using a
series of repeated measures ANOVAs where task and group membership (Stroop task
first versus paced breathing task first) were considered as predictors of fetal and maternal
physiology. GA at the fetal session also was included as a covariate in the fetal HR model,
consistent with previous research and in line with knowledge that fetal HR changes across
pregnancy [34]. ANOVA analyses also compared fetal HR changes between groups within
each period. Associations between maternal physiological responses and fetal HR were
assessed using bivariate correlations. SPSS 22 was used for all analyses.
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3. Results
3.1. Descriptive Information

Descriptive information about the study population is presented in Table 1. Women
presented with the Stroop task first versus the paced breathing task first did not differ on
any variables.

Table 1. Descriptive Statistics.

N = 51 N = 54

Stroop Task First
(Group 1)

Paced Breathing Task First
(Group 2)

Mean (SD), N, or % Mean (SD), N, or %

Ethnicity (% Latina) 62.75% 64.81%
Income

$0–$15,000 6 3
$15,000–$25,000 9 10
$26,000–$50,000 8 14
$51,000–$100,000 11 16
$101,000–$250,000 15 7
Over $250,000 1 3

Age (years) 30.72 (6.43) 30.21 (5.72)
Education (years) 15.65 (3.46) 15.33 (3.02)
Child sex (% Female) 50% 51%
Pre-pregnancy BMI 25.50 (5.80) 25.45 (4.70)
GA at birth (weeks) 39.17 (1.42) 39.61 (1.12)
Birthweight (g) 3313.80 (434.81) 3468.56 (414.14)
GA at session (weeks) 34.39 (1.40) 34.59 (1.46)
Maternal Stress Ratings

Baseline 1.73 (1.45) 2.19 (1.74)
Task 1 2.10 (1.64) 2.33 (1.39)
Task 2 2.40 (1.55) 3.76 (1.80)

Maternal Heart Rate
Baseline 89.64 (11.80) 91.70 (10.33)
Task 1 92.39 (11.35) 91.23 (9.86)
Task 2 89.93 (11.88) 91.82 (10.41)

Maternal Respiration
Baseline 17.72 (3.18) 18.50 (4.27)
Task 1 21.11 (3.35) 17.05 (6.65)
Task 2 17.55 (7.56) 22.60 (4.93)

Note: GA = Gestational Age. Two participants (one from each group) did not provide income information.

3.2. Group Differences in Fetal HR Reactivity

Fetal HR values during all periods are provided in Table 2. First, group comparisons
within each period were performed. There were no group differences in fetal HR between
the fetuses whose mothers completed the paced breathing task first or Stroop task first
during the first task period (p = 0.59) or during the first recovery period (p = 0.25). However,
there was a significant difference in fetal heart rate between the groups during the second
task period (p < 0.01) and the second recovery period (p = 0.04), to such an extent that
fetuses whose mothers received the Stroop task first had higher HR during both periods
(Figure 3).

Second, repeated measures ANOVA analyses were performed. Results from these
analyses demonstrated that the main effect of the period (collapsed across both groups of
fetuses, i.e., the baseline period versus the Stroop task period, the paced breathing task
period, and the recovery periods) was not significant (F = 0.39, p = 0.81), suggesting that
fetal HR did not change from the baseline period to either of the tasks or to the recovery
periods. However, a significant task-by-group interaction indicated that fetal HR increased
during the paced breathing task in fetuses whose mothers completed the Stroop task first
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(p < 0.01), but did not change over time in those whose mothers completed the paced
breathing task first.

Table 2. Fetal Heart Rate Values Across All Experimental Periods.

Baseline Task 1 Recovery 1 Task 2 Recovery 2

Mean SD Mean SD Mean SD Mean SD Mean SD

Full Sample 140.14 8.26 140.27 7.44 139.84 8.65 141.01 8.24 142.54 9.31
Paced Breathing First 139.13 6.12 140.65 7.00 138.61 7.55 138.17 7.01 140.75 9.36

Stroop First 141.21 9.99 139.82 7.99 141.13 9.58 143.97 8.47 144.49 8.95
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Furthermore, an ANOVA analysis compared the fetal HR values during each period
to the preceding period. When the paced breathing task was presented to mothers first,
there were no differences in fetal HR between periods. When the Stroop task was presented
to mothers first, there was a significant increase in fetal HR only from the first recovery
period to the second task period—the paced breathing task (p = 0.04) (Figure 3).

3.3. Maternal Responses to Tasks

Maternal HR. Maternal HR during the various periods are presented in Table 1 and vi-
sually depicted in Figure 4. Results from repeated measures ANOVA revealed a significant
task-by-group interaction (p = 0.04). Specifically, women who received the Stroop task first
increased their HR from baseline during the Stroop task, while the women who received the
paced breathing task first did not increase their HR from baseline. No additional changes
in maternal HR were observed across periods for either group. Maternal HR was not
associated with fetal HR during any period (p values range from 0.08–0.74), except during
the first recovery period (r = 0.24, p = 0.03).

Maternal Respiratory Rate. Maternal respiratory rates during the various periods are
presented in Table 1 and Figure 5. Results from the repeated measures ANOVA suggest
that women in both groups (Stroop task first and paced breathing task first) experienced
sustained increases in respiratory rate from the baseline during the Stroop task (p < 0.01).
Due to the nature of the paced breathing task (acute increases and decreases across the
period), the average maternal respiratory rate during the paced breathing task did not
increase from the baseline (p = 0.43). The task-by-group interaction term was not significant
(p = 0.41), suggesting there were no group differences in maternal respiratory rate across
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the various periods. Maternal respiratory rate during each task was not correlated with
mean fetal HR during that task (p values range from 0.15–0.84).
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Maternal Stress Ratings. The average stress scores are provided in Table 1. Results from
the repeated measures ANOVA suggest that ratings at baseline did not differ significantly
between the groups of women (p = 0.31). A significant task-by-group interaction suggests
that, for the women who received the Stroop task first, average stress levels during the
two tasks did not differ. However, the women who received the paced breathing task first
reported that the Stroop task was more stressful (F = 5.25, p = 0.02). Maternal stress ratings
during each task were not correlated with fetal HR during that task.

3.4. Sensitivity Analyses of Group Differences in Fetal HR

In sensitivity analyses, we examined whether demographic and psychosocial variables
accounted for, or moderated, the effect described above. Specifically, we examined whether
maternal stress ratings of the tasks or fetal sex moderated the results. These variables were
not independently or interactively related to fetal HR during the periods. Our findings
were unchanged when each demographic variable presented in Table 1 was included in the
model (each variable included in a separate model).



Children 2022, 9, 1670 8 of 11

4. Discussion

The current study examined patterns of third-trimester fetal HR to determine if there
is evidence of priming in utero. The counterbalanced laboratory study design allowed
for the observation of different fetal HR patterns, each of which could support a unique
hypothesis. First, there could be charactersistics of the paced breathing task, which the
fetuses register and respond to with a change in HR. In the present study, this hypothesis
seems less likely since fetal HR only increased during the paced breathing task when it
followed maternal exposure to the Stroop task, suggesting that maternal exposure to the
paced breathing task alone does not elicit significant changes in fetal HR. Second, there
could be a cumulative effect of maternal engagement in laboratory tasks, which the fetuses
recognize and respond to with an increase in HR. Since fetal HR did not reliably change
during the second task, the cumulutive laboratory pertubation hypothesis is less likely
to be accurate. Finally, the fetal HR pattern could support the identification of a priming
effect, which occurs when exposure to one stimulus impacts the response to a subsequent,
related stimulus [36]. Fetal HR increased during the paced breathing task only when the
Stroop task was presented first. Furthermore, there was no group difference in fetal HR
during the first recovery period. The group difference in fetal HR emerged later during
the second task period when mothers completed another ANS-stimulating task similar to
the first one. Taken together, these results suggest that fetal priming may exist; the prior
experience of maternal engagement with a specific ANS-stimulating task elicited a fetal
HR response when exposed again to a similar experience.

It is important to consider the changes in fetal HR in the context of the corresponding
maternal responses in order to further understand the priming effect. In the present study,
maternal heart rate increased from the baseline during the Stroop task, but only when the
Stroop task was presented first. Maternal respiratory rate increased during the Stroop task,
regardless of task order. In accordance with these results, the fetuses registered the maternal
HR and respiratory rate reactivity to the Stroop task. This influenced their response during
maternal engagement with a subsequent, related task involving acute changes in respiration,
the paced breathing task. Conversely, when presented first, the paced breathing task did
not elicit a sustained change in maternal HR or respiratory rate—though the maternal
respiratory rate increased during the second Stroop task. Without a maternal HR or
sustained respiratory rate response during the first paced breathing task, and thus without
prior priming, fetuses did not show a HR response during the second related task, the Stroop
task (despite a corresponding increase in maternal respiratory rate). Importantly, there was
also no group difference in fetal HR during the first recovery period; the difference only
emerged following the second exposure to an in utero pertubation via materal engagment
in a laboratory task. This further demonstrates the specifity of the results and the action
of priming. Finally, fetal HR changes did not track maternal HR or respiratory activity,
which is consistent with previous work demonstrating maternal task-based physiology as
a sensory stimulus for the fetus [24,37].

These findings are likely consistent with previous work suggesting that memory
capacities emerge prior to birth. Habituation and classical conditioning, both forms of
implicit memory, have been demonstrated in utero [10,11,13,14]. Our study is one of the
few studies to suggest that fetuses exhibit a third form of implicit memory, priming. It is
important to understand the development of in utero memory capacities, since previous
work has suggested that these capacities may be associated with development in childhood.
For example, the speed at which fetuses habituate is inversely related to their gestational
age and postnatal outcomes [38–41]. Fetal priming may be of particular interest owing to
its uniquely adaptive nature which elicits more efficient behavioral and cognitive responses
to environmental stimuli. There is also evidence for more sophisticated fetal memory
functions. Several studies have shown that flavors from the maternal diet are transferred
to the fetus through amniotic fluid. After delivery, infants demonstrate recognition and
even preference for these flavors [42,43]. Taken together, the findings across these studies
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suggest that in utero exposure to maternal stimuli, as well as fetal memory capacities, may
influence long-term development, warranting further investigation.

The current study has several strengths. First, the study utilized data from an ethni-
cally diverse group of women, more than half of whom identified as Latina, who remain
understudied in developmental literature. This ethnically diverse group of women also
improves the generalizability of our results to the broader population. Second, sensitivity
analyses were performed and determined that maternal stress ratings of the tasks and fetal
sex did not moderate the results. Furthermore, demographic variables outlined in Table 1
were included in the model and did not change the results. Finally, there are only several
empirical investigations of fetal memory capacities involving larger sample sizes similar to
the sample size in the present study [7,9–11,40].

There are limitations to the present study. Our data arose from a population of
women living in a large urban area in the northeast; these results should be replicated with
other populations. Further, the current study was not focused on identifying the specific
priming stimulus or the mechanism that explains this priming effect. Future studies should
investigate other maternal physiological processes (e.g., blood pressure changes) that
may be responsible for our findings, as well as a finer resolution of maternal and fetal
physiological changes. Such an investigation may provide insight into the perceptual
processes involved in the early manifestations of priming.

In summary, the results of this current study suggest that there may be evidence for
another form of implicit memory in utero, known as priming. Further investigations into
the emergence of prenatal memory capabilities may provide insight into fetal cognitive
capacities and the influence of the prenatal environment on later brain and behavioral
development.
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