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Abstract 54 

The autonomic nervous system (ANS) regulates the body’s physiology, including 55 

cardiovascular function. As the ANS develops during the second to third trimester, fetal heart rate 56 

variability (HRV) increases while fetal heart rate (HR) decreases. In this way, fetal HR and HRV 57 

provide an index of fetal autonomic nervous system development and future neurobehavioral 58 

regulation. Fetal HR and HRV have been associated with child language ability and psychomotor 59 

development behavior in toddlerhood. However, their associations with post-birth autonomic brain 60 

systems, such as the brainstem, hypothalamus, and dorsal anterior cingulate cortex (dACC), have 61 

yet to be investigated even though brain pathways involved in autonomic regulation are well 62 

established in older individuals. We assessed whether fetal HR and HRV were associated with 63 

the brainstem, hypothalamic and dACC functional connectivity in newborns. Data were obtained 64 

from 60 pregnant individuals (ages 14-42) at 24-27 and 34-37 weeks gestation using a fetal 65 

actocardiograph to generate fetal HR and HRV. During natural sleep, their infants (38 males and 66 

22 females) underwent a fMRI scan between 40-46 weeks of postmenstrual age. Our findings 67 

relate fetal heart indices to brainstem, hypothalamic, and dACC connectivity and reveal 68 

connections with widespread brain regions that may support behavioral and emotional regulation. 69 

We demonstrated the basic physiologic association between fetal HR indices and lower and 70 

higher order brain regions involved in regulatory processes. This work provides the foundation for 71 

future behavioral or physiological regulation research in fetuses and infants.  72 

 73 

 74 

 75 

 76 
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 78 

Significance statement 79 

Fetal heart rate indices are quantifiable, developmental markers of the fetal autonomic nervous 80 

system. Variations in their trajectories can signal compromised neurodevelopmental outcomes. 81 

We assessed associations between fetal heart rate indices and early infant brain development to 82 

identify unique or common associations corresponding to autonomic nervous system maturation 83 

patterns. We found associations between fetal heart rate indices and infant brainstem, 84 

hypothalamic, and dACC connectivity—areas that support autonomic and behavioral regulatory 85 

functions. The study demonstrates that these associations between ANS and brain regions 86 

involved in autonomic regulation exist early in life. These findings are a first step to understanding 87 

how these brain connections form the basis of future regulatory development.  88 

 89 

 90 

  91 
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1. Introduction 92 

The autonomic nervous system (ANS) is a component of the peripheral nervous system 93 

that regulates the body’s physiology. It cooperatively modulates the heart rate through the 94 

sympathetic nervous system (SNS) and the parasympathetic nervous system (PNS). The brain 95 

pathways involved in autonomic regulation are well-established in human adults. For example, 96 

the hypothalamus connects the lower-order (including the medulla oblongata) and higher-order 97 

(including the dorsal anterior cingulate—dACC) nervous systems to interpret environmental 98 

stimuli and regulate cardiovascular function (Ulrich-Lai and Herman, 2009). 99 

The ANS regulatory capacity begins as early as eight weeks gestation. ANS activity is a 100 

marker of developing fetal brain functions and modulates cardiovascular responses (David et al., 101 

2007; Chouchou and Desseilles, 2014). Fetal ANS development can be non-invasively assessed 102 

with fetal heart rate (HR) and fetal heart rate variability (HRV) (Spann et al., 2014; Spann et al., 103 

2015; de la Cruz et al., 2019). Internal and external stimuli cause autonomic adjustments to 104 

maintain homeostasis, resulting in natural HR and HRV variations (Oliveira et al., 2019). Fetal HR 105 

is mainly controlled by the SNS early in gestation and the PNS later in gestation (Hofmeyr et al., 106 

2014). During the transition from the late second into the third trimester, the development of fetal 107 

HR is driven by the increase of the parasympathetic influence and the changes in autonomic 108 

control from the medulla to higher cortical regions (David et al., 2007; DiPietro et al., 2015). This 109 

shift is reflected in the decline of mean fetal HR during rest (Dipietro et al., 2001; DiPietro et al., 110 

2015; Heuser, 2020; Cerritelli et al., 2021). By 30 weeks gestation, ANS modulation involves input 111 

from the dACC and medial prefrontal cortex (mPFC) (Robinson et al., 1966; Horiuchi et al., 2006).  112 

Fetal HR and HRV are also associated with risk for poor neurodevelopmental outcomes 113 

(Hofmeyr et al., 2014; Karmakar et al., 2015; Howland et al., 2020). Fetal HR and HRV correlate 114 

with later higher motor control and language development scores (DiPietro et al., 2007) and early 115 

temperament and emotion regulation scores (Feldman, 2006; Werner et al., 2007; Dipietro et al., 116 
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2018; Howland et al., 2020; Pingeton et al., 2021). Additionally, prenatal exposures to maternal 117 

hyperglycemia and environmental toxins can alter fetal ANS development (DiPietro et al., 1999; 118 

Monk et al., 2000; DiPietro et al., 2002; Monk et al., 2004; Zisser et al., 2006; DiPietro et al., 119 

2013). Overall, this suggests fetal ANS activity, as measured by HR indices, is an important 120 

indicator for developmental outcomes.  121 

Functional neuroimaging studies with healthy adults connect cortico-limbic activity and 122 

autonomic regulation (de la Cruz et al., 2019). Strong age-dependent associations exist between 123 

HRV and functional connectivity of the posterior cingulate cortex and the medial prefrontal cortex 124 

(mPFC) (Kumral et al., 2019). Connectivity between brain regions involved in ANS regulation 125 

exists as early as 24-27 weeks of gestation (Thomason et al., 2015; Borsani et al., 2019). Further, 126 

functional networks are largely observable in the neonatal period (Doria et al., 2010; Gao et al., 127 

2015; Gao et al., 2017). For example, dACC shows strong connectivity to the insula in the 128 

neonatal period (Spann et al., 2018). Nevertheless, studies associating early brain functioning 129 

with ANS regulation are lacking. In the single published study, higher fetal HRV assessed at 34–130 

37 weeks gestation was positively associated with greater infant connectivity between the dACC 131 

and mPFC (Spann et al., 2018).  132 

This study investigated the associations between fetal HR indices during the second and 133 

third trimesters and newborn brain connectivity. We acquired fetal HR data during the second and 134 

third trimesters to measure fetal ANS development. We assessed brainstem, hypothalamus, and 135 

dACC functional connectivity using resting-state fMRI data acquired at 40-46 weeks 136 

postmenstrual age (PMA). Our primary hypothesis was that third trimester fetal HR indices would 137 

associate significantly with newborn functional brain connectivity in the seed areas involved with 138 

the ANS. Our secondary hypothesis was that second trimester fetal HR and HRV would yield 139 

similar associations. The novelty of this research precluded specific hypotheses about the 140 

direction of these effects. 141 
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2. Materials and Methods 143 

2.1. Participants 144 

Pregnant individuals, aged 14-42, were recruited in the second trimester (13-28 weeks) 145 

through the Departments of Obstetrics and Gynecology at Columbia University Irving Medical 146 

Center (CUIMC), Weill Cornell Medical College, and flyers posted in the CUIMC vicinity. All 147 

pregnant participants had no major health problems during recruitment and received routine 148 

prenatal care. Adult participants provided informed consent. If they were under 18, they completed 149 

an assent form, and their parent signed a consent form. The New York State Psychiatric Institute 150 

Institutional Review Board approved the procedures. Participants were excluded from the studies 151 

if they acknowledged using recreational drugs, tobacco, or alcohol, taking medications that affect 152 

cardiovascular function, or not speaking English fluently. 153 

2.2. Fetal assessment 154 

To maximize reproducibility, pregnant individuals participated in a standardized, validated 155 

protocol (Besinger and Johnson, 1989; DiPietro et al., 1999; DiPietro et al., 2004). They were 156 

asked to refrain from eating 1.5 hours before the visit. During data collection, individuals were 157 

awake to avoid acute increases or decreases in fetal HR or movement that would affect data 158 

collection. Finally, HR indices were collected after 20 weeks of gestation when they are more 159 

stable. 160 

Fetal HR was acquired while the participants were in a semi-recumbent position for 20 161 

minutes, using a Toitu MT 325 fetal actocardiograph (Toitu Co.,Ltd, Tokyo, Japan) during the 24-162 

27th (second trimester) and 34-37th (third trimester) weeks of gestation. The Toitu detects fetal HR 163 

via a single transabdominal Doppler transducer. The signal is processed through a series of filters. 164 

These filters remove the frequency components of the Doppler signal that are associated with 165 

fetal HR (Besinger and Johnson, 1989; DiPietro et al., 1999; DiPietro et al., 2004). Fetal HR output 166 
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was digitized at 50 Hz using a 16 bit A/D card (National Instruments 16XE50). Fetal HR below 80 167 

beats per minute (bpm) or above 200 bpm were removed. Custom MATLAB programs 168 

(http://www.mathworks.com) were used to calculate mean fetal HR and the standard deviation of 169 

fetal HR (i.e., HRV). A detailed algorithm description has previously been published (Doyle et al., 170 

2015; Spann et al., 2015; Spann et al., 2018).  171 

2.3. Infant imaging 172 

2.3.1 Infant MRI preparation and data acquisition 173 

Sixty infants (38 males and 22 females) were scanned within the first weeks of 174 

postmenstrual life (PMA ≤ 46 weeks). After they were fed and swaddled, they were given time to 175 

fall asleep naturally. We used foam ear plugs, wax, and ear shields (Natus Medical) to dampen 176 

the scanner noise. The infants' heart rate and oxygen saturation were monitored continually 177 

during the scan (InVivo Research, Biopac). Images were obtained using a 3 Tesla Signa MRI 178 

scanner (General Electric).  179 

There are two different sets of parameters using during scanning, earlier subjects used a 180 

different sequence than the later subjects. The images for the earlier subjects (n=38) were 181 

acquired using a 3 Tesla General Electric Signa MRI scanner with an eight-channel head coil. A 182 

2D, multiple shot, fast spin echo sequence was employed to obtain high-resolution anatomical 183 

T2-weighted images, with PROPELLER (Periodically Rotated Overlapping Parallel Lines with 184 

Enhanced Reconstruction) used to decrease motion artifacts in the reconstructed MR images 185 

(Pipe, 1999): repetition time (TR) = 10,000 ms; echo time (TE) = 130 ms; echo train length (ETL) 186 

= 32; matrix size = 192 × 192; field of view (FOV) = 190 × 190 mm; phase FOV = 100%; slice 187 

thickness = 1.0 mm; number of excitations (NEX) = 2. The spatial resolution of the T2-weighted 188 

images was 1 mm3. Functional images were acquired using a standard echoplanar imaging 189 

sequence: TR = 2200 ms; TE = 30 ms; matrix size = 64 × 64; FOV = 190 × 190 mm; phase FOV 190 
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= 100%; slice thickness = 5.0 mm, contiguous; number of slices = 24; bandwidth = 7812.5 Hz; 191 

voxel size = 2.969 x 2.969 x 5. Due to the infant waking, the number of runs acquired were 192 

different for each participant. A median of 6 runs of 102 volumes (3 min 44.4s each) were collected 193 

per infant. The images for the newer subjects (n=10) were acquired using a 3 Tesla General 194 

Electric Signa Premier with a 48-channel head coil and the anatomical T2-weighted images were 195 

acquired with: TR=3202 ms; TE=60 ms; matrix size=256x256; FOV=256x256 mm; phase 196 

FOV=100%; ETL=140; slice thickness=0.9 mm. Functional images for the new subjects were 197 

acquired using a standard echoplanar imaging sequence: TR=2000 ms; TE=30 ms; matrix 198 

size=64 x 64; FOV=190 x 190 mm; phase FOV = 100%; slice thickness = 3.0mm; number of 199 

slices = 34; bandwidth=7812.5 Hz; voxel size = 2.969 x 2.969 x 3. The functional sequences have 200 

built-in discarded volumes to allow the tissue to reach a steady state. The number of runs varied 201 

per participant and a median of 3 runs of 90 volumes were obtained for each infant.  When 202 

combining all participants, we removed the last 12 volumes from the fMRI data from the earlier 203 

subjects to match the number of volumes from the newer subjects.  204 

2.3.2. Pre-processing  205 

Anatomical images were skull stripped using FSL (https://fsl.fmrib.ox.ac.uk/fsl/). If, after 206 

visual inspection, any non-brain tissue remained, it was removed manually. Unless otherwise 207 

specified, all further analyses were performed using BioImage Suite (Joshi et al., 2011). 208 

Anatomical images were non-linear registered to a custom, age-appropriate template (Spann et 209 

al., 2018) using a validated algorithm (Scheinost et al., 2017). After the anatomical scans were 210 

registered to the template, functional images were rigidly aligned to the anatomical images. All 211 

transformation pairs were calculated independently and combined into a single transform, warping 212 

the single participant results into common space. This single transformation allows the individual 213 

participant images to be transformed to common space with only one transformation, thereby 214 

reducing interpolation error.  215 
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We performed motion correction on the functional data with SPM12 216 

(https://www.fil.ion.ucl.ac.uk/spm/). The frame-to-frame motion was calculated across all the 217 

functional volumes. Data were further cleaned as previously described (Kwon et al., 2014). Linear 218 

and quadratic drifts, mean cerebrospinal fluid signal, mean white matter signal, mean gray matter 219 

signal, and a 24-parameter motion model (6 motion parameters, 6 temporal derivatives, and their 220 

squares) were regressed from the data. A Gaussian filter with an approximate cutoff frequency of 221 

0.12 Hz was used to smooth the functional data temporarily.  222 

Because motion and the amount of data available for analysis can affect functional 223 

connectivity measures (Van Dijk et al., 2012; Noble et al., 2017), we used a strict inclusion 224 

criterion that participants had at least 2 runs of data with an average frame-to-frame motion of 225 

<0.15 mm. We used the average of 2 runs per subject. Only one infant was removed using these 226 

criteria. If more than two resting state runs were available, we included the ones with the lowest 227 

average frame-to-frame motion in the analysis. 228 

2.3.3. Seed connectivity 229 

The seed regions of interest were defined as the bilateral medulla, hypothalamus, and 230 

dorsal anterior cingulate cortex (dACC). The seeds were manually defined on the reference brain 231 

(Fig. 1). The approximate MNI coordinates are: dACC (-1,24,26), medulla (-4,-36,-35), and 232 

hypothalamus (-2,-3,-3). The temporal signal noise ratios for each seed are 170.71±109.35 for 233 

the dACC, 49.37±32.84 for the medulla, and 65.36±34.86 for the hypothalamus.  In each 234 

participant, the time course of the reference region was computed by averaging the time course 235 

of every voxel within the seed region. This time course was correlated with the time course for 236 

every voxel in gray matter to create a map of r-values representing seed-to-whole-brain 237 

connectivity. Using the Fisher's transform, we transformed these r-values to z-values, generating 238 

one map for each seed and representing the strength of correlation with the seed for each 239 

participant.  240 
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2.4. Statistical analyses  241 

Our primary analysis assessed the association of mean resting fetal HR and HRV during 242 

the third trimester with measures of connectivity of the seed areas to the whole brain. The second-243 

trimester associations were also assessed. Our sample during the second trimester was smaller 244 

(n=33) than in the third trimester (n=48); therefore, these results are presented as secondary. 245 

Finally, for exploratory analyses, we associated the change from second to third trimester fetal 246 

HR indices and seed connectivity (n=27). The imaging data were analyzed using voxel-wise linear 247 

models controlling for biological sex, motion, maternal age, scanner/sequence, and PMA. 248 

Significant imaging clusters were shown at p<0.05, corrected for multiple statistical comparisons. 249 

We corrected for multiple comparisons across gray matter using cluster-level correction estimated 250 

via AFNI’s 3dClustSim (version 16.3.05, https://afni.nimh.nih.gov/) with 10,000 iterations, 251 

smoothness estimated with the -ACF option, an initial cluster forming threshold of p=0.001, and 252 

the gray matter mask applied in preprocessing.  253 

  254 
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3. Results 255 

3.1. Demographics 256 

Of the 60 participants, our final sample size consisted of 48 neonates with usable fetal HR 257 

in the third trimesters and high-quality fMRI data and of 33 neonates with usable fetal HR in the 258 

second trimesters and high-quality fMRI data. The average age of the pregnant women was 21 259 

(20.98 ± 5.5) years; the majority were Hispanic (80%). Neonates were scanned at an average 43 260 

(42.97 ± 2.04) weeks PMA; the majority were male (63%). The infants were healthy and were 261 

born without delivery complications at gestational age >37 weeks. The mean frame-to-frame 262 

motion was 0.05 mm and was not correlated with our main outcomes (fetal HR and HRV; 263 

r’s<0.05). 264 

3.2. Primary Analyses 265 

3.2.1. Associations of mean resting fetal HR in the third trimester with bilateral medulla, dACC, 266 

and hypothalamic connectivity in neonates (n=48). 267 

Higher mean fetal HR was positively associated with the connectivity between the medulla 268 

and the bilateral precentral and postcentral gyrus and the right inferior parietal lobe (IPL; Fig. 2). 269 

Higher mean fetal HR displayed a positive association with the connectivity between the 270 

hypothalamus and the left and right anterior part of the middle frontal gyrus (MFG) (Fig. 2). Higher 271 

mean fetal HR was inversely associated with connectivity between the dACC and left cerebellum. 272 

Additionally, higher mean fetal HR was associated with positive connectivity between the dACC 273 

and a cluster that extends in the IPL and the superior temporal gyrus (STG; Fig. 2). The location 274 

and size of all significant clusters are summarized in Table 1.  275 

3.2.2. Associations of fetal HRV in the third trimester with bilateral medulla, dACC, and 276 

hypothalamic connectivity in neonates (n=48). 277 
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Higher fetal HRV was positively associated with the connectivity between the medulla and 278 

the left precuneus and paracentral lobule (Fig. 3). Higher fetal HRV was inversely associated with 279 

the connectivity between the hypothalamus and the left middle temporal gyrus (Fig. 3). Higher 280 

fetal HRV was positively associated with connectivity between the bilateral dACC and the left 281 

superior frontal gyrus and between the bilateral dACC and the right lateral occipital gyrus (Fig. 3). 282 

The location and size of all significant clusters are summarized in Table 1.  283 

3.3. Secondary analyses 284 

3.3.1. Associations of mean resting fetal HR in the second trimester with bilateral medulla, 285 

hypothalamic, and dACC connectivity in neonates (n=33). 286 

Higher mean fetal HR was inversely associated with the medulla-left MFG connectivity 287 

and positively with medulla-right STG and IPL connectivity (Fig. 4). Higher mean fetal HR was 288 

positively associated with the connectivity between the hypothalamus and left subcortex and 289 

between the hypothalamus and left precuneus/paracentral lobule (Fig. 4). Higher mean fetal HR 290 

was inversely associated with the connectivity between the dACC and the right cerebellum, 291 

between the dACC and the right basal ganglia, and between the dACC and left insula (Fig. 4). 292 

Higher mean fetal HR was associated with the connectivity between the dACC and the bilateral 293 

visual cortex and between the dACC and the right lateral occipital gyrus (Fig. 4). The location and 294 

size of all significant clusters are summarized in Table 2. 295 

3.3.2. Associations of fetal HRV in the second trimester with bilateral medulla, hypothalamic, and 296 

dACC connectivity in neonates (n=33). 297 

Higher fetal HRV was positively associated with the connectivity between the medulla and 298 

right cerebellum, between the medulla and the left fusiform gyrus/cerebellum, and between the 299 

medulla and right SPL (Fig. 5). Higher fetal HRV was positively associated with connectivity 300 

between hypothalamus and right and left subcortex (Fig. 5). Higher fetal HRV was positively 301 
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associated with connectivity between dACC and middle cingulate cortex (Fig. 5). The location and 302 

size of all significant clusters are summarized in Table 2. 303 

3.4. Exploratory analyses 304 

3.4.1. Associations of the change in mean fetal HR from the second to third trimester with bilateral 305 

medulla, hypothalamic, and dACC connectivity in newborns (n=27). 306 

 Higher change in fetal HR was positively associated with the connectivity between the 307 

medulla and the left precentral and postcentral gyrus (Fig. 6). Higher change in fetal HR was 308 

inversely associated with the connectivity between the medulla and the cerebellum (Fig. 6). No 309 

associations with the hypothalamus were observed. Higher change in fetal HR was positively 310 

associated with the connectivity between the dACC and the right inferior frontal gyrus (Fig. 6). 311 

The location and size of all significant clusters are summarized in Table 3. 312 

3.4.2. Associations of the change in fetal HRV from the second to third trimester with bilateral 313 

medulla, hypothalamic, and dACC connectivity in neonates (n=27). 314 

Higher change in fetal HRV was positively associated with the connectivity between the 315 

medulla and the right inferior occipital gyrus (Fig. 7). Higher change in fetal HRV was inversely 316 

associated with the connectivity between the medulla and the left hippocampus and between the 317 

medulla and the right cerebellum (Fig. 7). Higher change in fetal HRV was positively associated 318 

with the connectivity between the hypothalamus and the bilateral precuneus and paracentral 319 

lobule and between the hypothalamus and the left precentral gyrus (Fig. 7). Higher change in fetal 320 

HRV was inversely associated with the connectivity between the hypothalamus and left middle 321 

temporal gyrus (Fig. 7). Higher change in fetal HRV was positively associated with the connectivity 322 

between the dACC and the left middle frontal gyrus (Fig. 7). The location and size of all significant 323 

clusters are summarized in Table 3. 324 

 325 
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 326 

4. Discussion 327 

This study investigated the associations between fetal HR indices and functional 328 

connectivity of brain regions involved in autonomic regulation, including the medulla, 329 

hypothalamus, and dACC (Critchley et al., 2003). Our main findings are significant associations 330 

(p<0.05, corrected) within both trimesters for fetal HR and HRV with these brain regions. Our 331 

results suggest that a diverse network of brain regions engage with core regulatory regions and 332 

are thereby associated with autonomic regulation at this early age. They complement results from 333 

prior neuroimaging studies with adults, which demonstrated that multiple, widespread brain 334 

regions extending from the neocortex to the brainstem are involved in ANS regulation (Ulrich-Lai 335 

and Herman, 2009; Beissner et al., 2013; Macey et al., 2015; de la Cruz et al., 2019; Matusik et 336 

al., 2023).  337 

Though links have been shown in non-human primates and adults (Candia-Rivera, 2022), 338 

this study demonstrates that these associations between ANS and brain regions involved in 339 

autonomic regulation exist early in life. These findings align with the maturation of autonomic 340 

regulation. The medulla oblongata is a primary regulator of fetal heart rate, but autonomic 341 

regulation shifts to include higher-order cortical regions around the end of the second trimester 342 

(Jongen et al., 2017; Mulkey and Plessis, 2018; Heuser, 2020). For example, ANS regulation 343 

involves input from the dACC and mPFC by 30 weeks gestation, which is characterized by a 344 

decline in mean fetal HR during rest (Robinson et al., 1966; Dipietro et al., 2001; Horiuchi et al., 345 

2006; DiPietro et al., 2015; Heuser, 2020; Cerritelli et al., 2021). This progression is reflected in 346 

our fetal HR findings. For example, in our exploratory analyses, positive associations are 347 

observed in cortical areas, whereas inverse associations are observed in the subcortex and 348 

cerebellum, consistent with the shift to higher-order cortical regions in the third trimester.   349 

JN
eurosci

 Acce
pted M

an
uscr

ipt



Our findings aid the understanding of the ANS in behavioral and emotional regulation, as 350 

well. These functions are important in identifying risks for compromised development of self-351 

regulation. Indeed, the motivation and ability to regulate internal physiological states serve as a 352 

foundation for other social-emotional regulation (Thompson and Levitt, 2010). Fetal HR and HRV 353 

associated with brain regions involved in behavioral and emotional regulation in early infancy. For 354 

example, the post-central gyrus, hypothalamus, and temporal lobe play roles in sensory and 355 

emotion processing (Fanselow and Dong, 2010; Potegal, 2012; Wong and Gallate, 2012; Kropf 356 

et al., 2019). The cerebellum also plays a critical role in social and emotional functions during 357 

infancy (Koziol et al., 2014; Beuriat et al., 2022). The cerebellum and the pre- and post-central 358 

gyrus modulate various sensory and motor functions that promote appropriate infant regulation to 359 

facilitate learning and environmental engagement (Diamond, 2000; Williams et al., 2020). Sensory 360 

or emotional stimuli influence ANS regulation and higher-order brain regions involved in 361 

behavioral and emotional regulation. Fetal HR indices correlate with behavioral (Dipietro et al., 362 

2018; Howland et al., 2020) and emotional regulation in infancy (Feldman, 2006; Pingeton et al., 363 

2021) and sensorimotor development at two years (DiPietro et al., 2007). This study adds to the 364 

previous literature by showing that the brain correlates of ANS regulation measured during the 365 

fetal period align with previous findings.  366 

Fetal HR and HRV are markers of neurodevelopmental outcomes (Hofmeyr et al., 2014; 367 

Karmakar et al., 2015; Howland et al., 2020). Prior work demonstrated their associations with 368 

motor control, language development (DiPietro et al., 2007), and temperament (Feldman, 2006; 369 

Werner et al., 2007; Dipietro et al., 2018; Howland et al., 2020; Pingeton et al., 2021). Many brain 370 

regions connected to the regulatory seed regions detected in our analyses involve similar abilities 371 

(e.g., language, speech, sensory and motor processing). For example, the strong associations 372 

between fetal HR and HRV and connectivity between language processing regions are also novel 373 

including the superior temporal and precentral gyri. Evidence has suggested that language 374 
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networks are already present during the third trimester of gestation (Ghio et al., 2021; Scheinost 375 

et al., 2022). There are also indications that infants are ready to learn language from birth (Berent 376 

et al., 2021). Fetal HR and HRV correlated with language ability at 2.5 years of age (DiPietro et 377 

al., 2007). However, the mechanistic link between fetal HR indices and developmental outcomes 378 

is unknown. Functional connectivity in the neonatal period may represent such a mediating 379 

pathway. Neonatal connectivity predicts short (Scheinost et al., 2020) and long-term behavioral 380 

outcomes (Sun et al., 2023). Fetal MR indices likely influence neonatal connectivity, which in turn, 381 

influence later behavior. Nevertheless, this indirect mediation path has yet to be tested and 382 

remains future research.  383 

There are several strengths to this study. We acquired data prospectively beginning in the 384 

second trimester of pregnancy and continuing into infancy. Including both trimesters is a strength 385 

as it allows us to track changes in fetal HR indices and their associations with infant brain networks 386 

across pregnancy rather than provide a snapshot of one timepoint. Our study also has several 387 

limitations. Two of the three seeds used in these analyses are subcortical and brainstem 388 

structures. These seeds had lower temporal signal noise ratios (tSNR) than the dACC seed 389 

(Figure 1). The sample size is small at n=48. However, this size is consistent with other infant 390 

studies (Korom et al., 2021) and neuroimaging studies more broadly (Szucs and Ioannidis, 2020). 391 

Our data did not facilitate time course analyses. Richer indices of heart variability may show 392 

different associations than we observed. Our maternal sample was young (mean age of 21). Thus, 393 

the observed associations may not generalize to other pregnant populations. Similarly, a majority 394 

of the sample is male. Investigations into the role of sex in the current study necessitate a larger 395 

sample size for greater statistical power. Despite the longitudinal nature of our study, we did not 396 

collect neuroimaging and heart rate data simultaneously. Relatedly, we also did not have 397 

longitudinal neuroimaging data. Future work should include fetal fMRI collected at the same 398 

gestational age as the heart rate data. Further, longitudinal studies should include data on the 399 

perinatal transition to understand how birth changes any observed associations (Scheinost et al., 400 
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2022). Additionally, we did not collect behavioral data during the neonatal period to correlate with 401 

the connectivity measures. The role of the observed results and later behavior is unclear. Finally, 402 

while we used a standardized protocol to minimize external influences on fetal vigilance state, the 403 

fetal vigilance state (Suwanrath and Suntharasaj, 2010) is unknown. State differences could have 404 

affected the heart rate indices. However, such discrimination of states would be challenging 405 

before 32 weeks of gestation when only periods of fetal activity and quiescence can be 406 

distinguished (Brändle et al., 2015).  407 

5. Conclusion 408 

Our findings show that neonatal brain regions—involved in autonomic regulation during 409 

postnatal development—have significant associations with fetal HR and HRV during the second 410 

and third trimester of gestation. They add to adult studies linking functional neuroimaging to 411 

autonomic regulation by showing association earlier in life. Future studies should aim to 412 

investigate how these brain connections mediate future development of autonomic and behavioral 413 

regulation abilities in childhood.  414 

 415 
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 604 

Table 1. Results of the correlations between bilateral medulla, hypothalamus, and 605 
dACC voxel-wise neonate functional connectivity and third trimester mean resting fetal 606 
HR and HRV (n=48). 607 

Seed (bilateral) Region Volume (# voxels) Association type 

FETAL MEAN HEART RATE 

 MEDULLA 

 Pre/postcentral gyrus (L) 496 Positive 

 Pre/postcentral gyrus (R+L) 339 Positive 

 Inferior parietal lobe (R) 239 Positive 

HYPOTHALAMUS 

 Middle frontal gyrus (L) 327 Positive 

 Middle frontal gyrus (R) 284 Positive 

dACC 

 Cerebellum (L) 480 Negative 

 Inferior parietal lobule & 
Superior temporal gyrus (L) 

273 Positive 

FETAL MEAN HEART RATE VARIABILITY 608 
 MEDULLA 

 Precuneus & paracentral 

lobule (L) 

331 Positive 

HYPOTHALAMUS 

 Middle temporal gyrus (L)               323 Negative 

dACC 

 Lateral occipital gyrus (R)          412 Positive 

 Superior frontal gyrus (L) 328 Positive 

 609 
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Table 2. Results of the correlations between bilateral medulla, hypothalamus and dACC 612 

voxel-wise neonate functional connectivity and second trimester mean resting fetal HR 613 

and HRV (n=33). 614 

 615 

Seed (bilateral) Region Volume (# 

voxels) 

Association 

type 

FETAL MEAN HEART RATE 

 MEDULLA 

 Middle frontal gyrus (L) 437 Negative 

 Superior temporal gyrus &  

inferior parietal lobule (R) 

317 Positive 

HYPOTHALAMUS 

 Subcortex (L) 324 Positive 

 Precuneus & paracentral lobule (L) 215 Positive 

 dACC 

 Insula (L) 587 Negative 

 Cerebellum lobules V-VI & Crus I 

(R) 

567 Negative 

 Visual cortex (R-L) 382 Positive 

 Lateral occipital gyrus (R)          251 Positive 

 Basal ganglia (R) 226 Negative 

FETAL HEART RATE VARIABILITY 616 
 MEDULLA 

 Cerebellum lobules V-VI & 

fusiform gyrus (L) 

964 Positive 

 Cerebellum lobules V-VI (R) 208 Positive 

 Superior parietal lobule (R) 204 Positive 

HYPOTHALAMUS 

 Subcortex (R) 768 Positive 

 Subcortex (L) 320 Positive 

 dACC 

 Middle cingulate cortex 226 Negative 

  617 

 618 
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 620 

 621 

Table 3. Results of the correlations between bilateral medulla, hypothalamus, and 622 
dACC neonate functional connectivity and the change from second to third trimester 623 

mean resting fetal HR and HRV (n=27). 624 

 625 

Seed (bilateral) Region Volume (# 

voxels) 

Association 

type 

CHANGE IN FETAL MEAN HEART RATE 

 MEDULLA 

 Pre/postcentral gyrus (L) 1144 Positive 

 Cerebellum (R+L) 1043 Negative 

 dACC 

 Inferior frontal gyrus (R) 376 Positive 

CHANGE IN FETAL HEART RATE VARIABILITY 626 
 MEDULLA 

 Cerebellum (R) 379 Negative 

 Hippocampus (L) 337 Negative 

 Inferior occipital gyrus (R) 203 Positive 

HYPOTHALAMUS 

 Precentral gyrus (L) 418 Positive 

 Precuneus and paracentral 

lobule (R) 

267 Positive 

 Middle temporal gyrus (L) 256 Negative 

 Precuneus and paracentral 

lobule (L) 

218 Positive 

 dACC 

 Middle frontal gyrus (L) 480 Positive 

  627 
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Figure 1. Sagittal views of the three regions of interest used for seed analysis that were 630 

manually defined on a custom, neonatal template (Spann et al., 2018). The bilateral medulla is 631 

shown in blue. The hypothalamus is shown in green. The dorsal anterior cingulate cortex 632 

(dACC) is shown in red. The approximate MNI coordinates are: dACC (-1,24,26), medulla (-4, -633 

36,-35), and hypothalamus (-2,-3,-3). The temporal signal noise ratios for each seed are 634 

49.37±32.84 for the medulla, 65.36±34.86 for the hypothalamus, and 170.71±109.35 for the 635 

dACC.   636 

 637 
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Figure 2. Associations between mean fetal heart rate (HR) during in the third trimester and 640 

newborn bilateral medulla, hypothalamus and dACC connectivity (n=48). (top) Higher mean 641 

fetal HR was positively associated with newborn connectivity between bilateral medulla and 642 

bilateral precentral, postcentral gyrus and the right inferior parietal lobe. (middle) Higher levels of 643 

mean fetal HR were positively associated with newborn connectivity between bilateral 644 

hypothalamus and the left and right middle frontal gyrus (left panel). (bottom) Higher levels of 645 

mean fetal HR were negatively associated with newborn connectivity between bilateral dACC and 646 

the left cerebellum. Higher levels of mean fetal HR positively associated with bilateral dACC and 647 

left inferior parietal lobule and superior temporal gyrus connectivity.  648 

 649 

 650 

 651 

 652 
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Figure 3. Associations between fetal heart rate variability (HRV) during in the third 658 

trimester and newborn bilateral medulla, hypothalamus, and dACC connectivity (n=48). 659 

(top) Higher fetal HRV was positively associated with the connectivity between the medulla and 660 

the left precuneus and paracentral lobule. (middle) Higher fetal HRV was inversely associated 661 

with the connectivity between the hypothalamus and the left middle temporal gyrus. (bottom) 662 

Higher fetal HRV was positively associated with connectivity between the bilateral dACC and the 663 

left superior frontal gyrus and between the bilateral dACC and the right lateral occipital gyrus. 664 
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 666 

Figure 4. Associations between the mean fetal HR during in the second trimester and 667 

newborn bilateral medulla, hypothalamus and dACC connectivity (n=33). (top) Higher mean 668 

fetal HR was inversely associated with the medulla-left MFG connectivity and positively with 669 

medulla-right STG and IPL connectivity. (middle) Higher mean fetal HR was positively associated 670 

with the connectivity between the hypothalamus and left subcortex and between the 671 

hypothalamus and left precuneus/paracentral lobule. (bottom) Higher mean fetal HR was 672 

inversely associated with the connectivity between the dACC and the right cerebellum, between 673 

the dACC and the right basal ganglia, and between the dACC and left insula. Higher mean fetal 674 

HR was associated with the connectivity between the dACC and the bilateral visual cortex and 675 

between the dACC and the right lateral occipital gyrus. 676 
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Figure 5. Associations between fetal HRV during in the second trimester and newborn 679 

bilateral medulla, hypothalamus, and dACC connectivity (n=33). (top) Higher fetal HRV was 680 

positively associated with the connectivity between the medulla and right cerebellum, between 681 

the medulla and the left fusiform gyrus/cerebellum, and between the medulla and right SPL. 682 

(middle) Higher fetal HRV was positively associated with connectivity between hypothalamus and 683 

right and left subcortex. (bottom) Higher fetal HRV was positively associated with connectivity 684 

between dACC and middle cingulate cortex. 685 
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Figure 6. Associations of the change in mean fetal HR from the second to third trimester 687 

with bilateral medulla, hypothalamic, and dACC connectivity in neonates (n=27). (top) 688 

Higher change in fetal HR was positively associated with the connectivity between the medulla 689 

and the left precentral and postcentral gyrus and inversely associated with the connectivity 690 

between the medulla and the cerebellum. (bottom) Higher change in fetal HR was positively 691 

associated with the connectivity between the dACC and the right inferior frontal gyrus. 692 

 693 

 694 
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Figure 7. Associations of the change in fetal HRV from the second to third trimester with 697 

bilateral medulla, hypothalamic, and dACC connectivity in neonates (n=27). (top) Higher 698 

change in fetal HRV was positively associated with the connectivity between the medulla and the 699 

right inferior occipital gyrus and was inversely associated with the connectivity between the 700 

medulla and the left hippocampus and between the medulla and right cerebellum. (middle) Higher 701 

change in fetal HRV was positively associated with the connectivity between the hypothalamus 702 

and the bilateral precuneus and paracentral lobule and between the hypothalamus and the left 703 

precentral gyrus. Higher change in fetal HRV was inversely associated with the connectivity 704 

between the hypothalamus and middle temporal gyrus. (bottom) Higher change in fetal HRV was 705 

positively associated with the connectivity between the dACC and the left middle frontal gyrus. 706 
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