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Mechanisms and Disease Associations
of Haplotype-Dependent
Allele-Specific DNA Methylation

Catherine Do,1,* Charles F. Lang,1 John Lin,1 Huferesh Darbary,1 Izabela Krupska,1 Aulona Gaba,1,2

Lynn Petukhova,3 Jean-Paul Vonsattel,4 Mary P. Gallagher,5 Robin S. Goland,6 Raphael A. Clynes,7

Andrew Dwork,4 John G. Kral,8 Catherine Monk,9 Angela M. Christiano,10 and Benjamin Tycko1,4,*

Haplotype-dependent allele-specific methylation (hap-ASM) can impact disease susceptibility, but maps of this phenomenon using

stringent criteria in disease-relevant tissues remain sparse. Here we apply array-based and Methyl-Seq approaches to multiple human

tissues and cell types, including brain, purified neurons and glia, T lymphocytes, and placenta, and identify 795 hap-ASM differentially

methylated regions (DMRs) and 3,082 strong methylation quantitative trait loci (mQTLs), most not previously reported. More than half

of these DMRs have cell type-restricted ASM, and among them are 188 hap-ASM DMRs and 933 mQTLs located near GWAS signals for

immune and neurological disorders. Targeted bis-seq confirmed hap-ASM in 12/13 loci tested, includingCCDC155, CD69, FRMD1, IRF1,

KBTBD11, and S100A*-ILF2, associated with immune phenotypes, MYT1L, PTPRN2, CMTM8 and CELF2, associated with neurological

disorders,NGFR andHLA-DRB6, associatedwith both immunological and brain disorders, and ZFP57, a trans-acting regulator of genomic

imprinting. Polymorphic CTCF and transcription factor (TF) binding sites were over-represented among hap-ASM DMRs and mQTLs,

and analysis of the human data, supplemented by cross-species comparisons to macaques, indicated that CTCF and TF binding likeli-

hood predicts the strength and direction of the allelic methylation asymmetry. These results show that hap-ASM is highly tissue specific;

an important trans-acting regulator of genomic imprinting is regulated by this phenomenon; and variation in CTCF and TF binding sites

is an underlyingmechanism, andmaps of hap-ASM andmQTLs reveal regulatory sequences underlying supra- and sub-threshold GWAS

peaks in immunological and neurological disorders.
Introduction

Statistical evidence from genome-wide association studies

(GWASs) has implicated numerous DNA sequence vari-

ants, mostly SNPs, as candidates for inter-individual

phenotypic differences and disease susceptibility. How-

ever, most of these variants reside in non-coding regions,

and how they result in differences in phenotypes is not

well understood. Moreover, multiple statistical compari-

sons demand stringent thresholds for significance, p <

5 3 10�8 for a GWAS,1 and this level probably leads to

the rejection of many biological true positives with sub-

threshold p values. In fact, diseases interrogated with

well-powered GWASs demonstrate that the majority of

risk alleles have small effect sizes and would not achieve

genome-wide significance in more moderately sized co-

horts.2 Therefore, methods to provide biological validity

to both supra- and sub-threshold variants are a high prior-

ity. A combined genetic-epigenetic approach can help to

address this challenge. In particular, identification of

haplotype-dependent allele-specific methylation (hap-

ASM) in the human genome by our group (Kerkel et al.3)

and by Schalkwyk et al.4 and Hellman and Chess,5 fol-
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lowed by others,6–15 led to suggestions that it might

contribute to inter-individual phenotypic variation and

that co-mapping this type of allelic asymmetry with

GWAS data could prove useful for promoting GWAS statis-

tical signals to biological true positives.16,17

ASM is a hallmark of two different phenomena: genomic

imprinting, where the methylation of an allele is deter-

mined by its parent-of-origin, and (non-imprinted) hap-

ASM, in which the local sequence context acts in cis to

dictate the methylation status of local CpGs.17 Hap-ASM

can be assessed either directly by bisulfite sequencing

(bis-seq) in heterozygotes or by methylation quantitative

trait loci (mQTL) analysis, which correlates net methyl-

ation of single CpGs with genotypes at nearby SNPs. Map-

ping hap-ASM and mQTLs and superimposing these maps

on GWAS data can support the biological relevance of

GWAS peaks, the hypothesis being that detection of hap-

ASM or an mQTL near a GWAS peak suggests the presence

of a bona fide regulatory SNP or haplotype, which reveals

its presence by conferring a physical asymmetry between

the two alleles in heterozygotes. Additional evidence,

including experiments in animal models, is needed for

a complete understanding of a given locus, but the
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combined hap-ASM/mQTL/GWAS method, and related

methods such as eQTL/GWAS analysis,18 allows genome-

wide screening for regulatory loci, which can then be prior-

itized for such studies.

Understanding the mechanisms of hap-ASM could pro-

vide additional insights. Previously, we documented exam-

ples of genes with hap-ASM in which the differentially

methylated regions (DMRs) are discrete in size (1 to 2 kb)

and precisely overlap with binding sites for the insulator

protein CTCF,14 and we proposed a model for hap-ASM

in which polymorphisms in CTCF binding sites abrogate

CTCF binding in a haplotype-dependent manner and

lead to preferential CpG methylation of the unoccupied

allele.14,17 Here, we test this mechanism by genome-wide

and fine-mapping of CpG methylation patterns in human

tissues, supplemented by cross-species comparisons of

methylation patterns in Homo sapiens and macaques. In

parallel, we identify examples of strong hap-ASM DMRs

and mQTLs in T cells and brain, many of which are tissue

specific, not previously reported, and located near supra-

and sub-threshold GWAS peaks for immunological and

neurological diseases. Lastly, we find that an important

trans-acting regulator of genomic imprinting is in turn

regulated by hap-ASM.
Material and Methods

Human and Macaque Tissues
The human tissues and cell types for this study are in Table S1.

CD3-positive T lymphocytes were isolated by negative selection

(RosetteSep, Sigma) from peripheral blood samples obtained

with informed consent. The GM12878 cell line DNA was pur-

chased from Coriell. All other human tissues were obtained from

autopsies. The mQTL discovery set included samples from 54 total

CD3-positive T cells, 44 temporal cortex (TC) gray matter samples,

18 NeuN-positive TC neurons isolated by FANS (see below), 22

non-neuronal brain cells (NeuN-negative from FANS; referred to

hereafter as glia), and 37 placenta samples (tissue taken from

immediately below the fetal surface and therefore not conta-

minated by maternal decidua). The hap-ASM discovery set for

Methyl-Seq, designed to represent a diverse human tissues,

included three T cell, three brain, two heart, two liver, one lung,

and two placenta samples. Informed consent was given for the

human samples and institutional review board (IRB) approval

obtained. The rhesus and bonnetmacaque (Macacamulatta and ra-

diata) tissues, including peripheral blood and liver, were obtained

from necropsies. The maintenance of the macaque colony was

approved by the Institutional Animal Care and Use Committee

of SUNY Downstate Medical Center.
Isolation of Neuronal and Glial Nuclei by

Fluorescence-Activated Nuclear Sorting
Frozen tissue (0.25 to 0.5 g) was homogenized for 1 min on ice,

then layered over a 60% sucrose cushion and centrifuged at

28,500 rpm for 2.5 hr at 4 degrees, as described by Matevossian

and Akbarian.19 The pelleted nuclei were re-suspended and incu-

bated with anti-NeuN-Alexa 488 conjugated antibody (Millipore

cat# MAB377X; RRID: AB_2149209) for 1 hr at 4�C prior to
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FANS. Both neuronal-enriched NeuN-positive and glial-enriched

NeuN-negative samples were recovered. Enrichment of NeuN-pos-

itive nuclei was confirmed by using an aliquot of the FANS samples

to prepare cytospin slides and visualized by fluorescence micro-

scopy. To assist nuclei visualization, the DNA was stained with

To-Pro3. Only samples that showed >95% Neu-N-positive cells

on analysis by NeuN immunofluorescence on cytospin slides

were utilized for DNA extraction. DNA was prepared from the

flow-sorted nuclei by standard SDS/proteinase-K lysis followed

by precipitation in 80% isopropanol with glycogen carrier.
Illumina 450K Methylation Profiling and SNP

Genotyping for Identifying mQTLs
Genomic DNA (500 ng) was used as per the manufacturer’s in-

structions for HumanMethylation450 Beadchips (Illumina), with

all assays performed at the Roswell Park Cancer Institute (RPCI)

Genomics Shared Resource. Data were processed with Genome

Studio, which calculates the fractional methylation (AVG_Beta)

at each queried CpG, after background correction, normalization

to internal control probes, and quantile normalization. All probes

mapping to the X or Y chromosome were removed, along with

probes that queried CpGs overlapping the positions of known

common DNA variants as reported in dbSNP build 138 (allele fre-

quencyR 1%), because these CpGs are destroyed by the SNP itself.

As recommended by Illumina, AVG_Beta values with a detection

p value > 0.05 were excluded from the analysis and replaced by

missing values. A small number of probes (<0.06%) with more

than 20% missing values were excluded. In parallel, the DNA

samples were genotyped on Illumina HumanOmni2.5 Beadchips,

followed by initial data processing with Genome Studio. SNPs

were annotated with dbSNP138.

We mapped mQTLs in each tissue and cell type using combined

SNP genotyping and 450K methylation data. Only SNPs with at

least three samples per genotype (AA, AB, and BB, where A is the

reference and B the alternate allele), with frequencies in Hardy-

Weinberg equilibrium, were analyzed. Exact tests of Hardy-Wein-

berg equilibrium for two allele markers were performed with R

‘‘genetics’’ package and SNP genotypes with a p value < 0.05

were considered in disequilibrium and excluded from further

analyses. Previous studies have found that methylation at mQTLs

correlates best with nearby SNPs, with the correlations decaying

rapidly over 1–2 kb and the majority of mQTLs located within

100 kb.8,12,15 Because our data confirmed this finding, we focused

on CpGs located within 75 kb on either side of heterozygous SNPs

(150 kb windows) to assess SNP-CpG methylation correlations.

The SNPs and CpGs meeting these criteria are referred to hereafter

as index SNPs and informative CpGs. For mQTLs, we required that

the fractional methylation of a given CpG should be a linear func-

tion of the genotype of the index SNP, where a numeric value has

been assigned to each genotype as follows: AA ¼ 0, AB ¼ 1, and

BB¼ 2. The coefficient b of the function reflects the additive effect

of one alternative allele, such that 2b is the methylation difference

between allele A and B. Thus, we searched for mQTLs using linear

regression to model the relationship between the fractional

methylation (AVG_Beta) and index SNP genotype. Each index

SNP-CpG pair within the 150 kb window was tested. We defined

mQTLs as CpGs with an R-squaredR 0.5 (which reflects the good-

ness of the fit to the linear function), a coefficient b R 0.1, and p

value corrected for multiple testing using Benjamini-Hochberg

method< 0.05 (FDR at 5%). The importance of using each of these

criteria is explained further in Figure S1. We ranked the mQTLs by
erican Journal of Human Genetics 98, 934–955, May 5, 2016 935



strength of allelic asymmetry using the geometric mean of the dif-

ference in fractional methylation between the A and B alleles, and

the R-squared value. Potential batch effects in the 450K data were

assessed by multivariate linear regression including the batch and

genotype as explanatory covariates. Minimal batch effects were

observed, such that 94% of the mQTLs remained significant after

batch correction. For testing mechanistic hypotheses by enrich-

ment analyses, to avoid bias due to multiple mQTL CpGs within

a small window, and to parallel our deep bis-seq data where the

average DNA fragment length was 250 bp, consecutive mQTL

CpGs within 250 bp were considered as a single DMR.

In the data from the brain samples, half of which were neuropa-

thologically normal and the other half affected by late-onset Alz-

heimer disease (AD [MIM: 104300]), we ruled out the effect of

AD status on the identified mQTLs by performing multivariate

linear regression, including the genotype, the disease status, and

the interaction term between disease status and genotype as

explanatory covariates. The coefficient b of the disease reflects

the overall effect of AD on net methylation, and the coefficient

b of the interaction term reflects the effect of AD on the correlation

betweenmethylation and genotype. Thus, a significant coefficient

b of the disease suggests a methylation difference between AD

versus control samples, and a significant coefficient b of the inter-

action term suggests that mQTL presence or strength is different

between AD and controls. All analyses were performed with R.
Agilent SureSelect Methyl-Seq for Mapping ASM
We used the Agilent SureSelect Methyl-Seq DNA hybrid capture

kit, followed by Nextgen bis-seq. In this protocol, targeted regions

(total of 3.7M CpGs) include RefGenes, promoter regions, CpG

islands, CpG island shores, shelves, and DNase I hypersensitive

sites. DNA was sheared to an average size of 250 bp and bisulfite

converted with the EZ DNA methylation kit (Zymo). Paired-end

reads (150 bp) were generated with an Illumina HiSeq2000

sequencer. One of the brain samples was relatively under-repre-

sented in the library, so additional sequences were generated on

a MiSeq sequencer to improve the coverage for this sample. After

trimming for low-quality bases (Phred score < 30) and reads

with a length < 40 bp with TrimGalore, the reads were aligned

to the human genome (GRCh37) using Bismark20 and duplicate

reads were removed with Samtools. Coverage metrics were calcu-

lated with Picard tools and SNP calling was performed with

BisSNP.21 Genotyping was carried out with human genome

GRCh37 and dbSNP137 as references. We filtered out heterozy-

gous SNPs with fewer than ten reads per allele. Bisulfite treatment

converts unmethylated C residues to T, whereas methylated C res-

idues are not converted. Therefore, for C/T and G/A SNPs (depend-

ing on the strand), the distinction between the alternate allele and

bisulfite conversion is not possible and these SNPs are not infor-

mative for hap-ASM analysis. However, because Agilent SureSelect

captures negative stranded DNA fragments, only G/A SNPs needed

to be filtered out. ASM calling was performed with Bismark, after

separating the valid SNP-containing reads by allele. Informative

SNPs were defined as non-G/A heterozygous SNPs that passed

BisSNP criteria and were covered by more than ten reads per allele.

Informative regions were defined as regions with overlapping

reads covering at least one informative SNP. To further increase

the stringency and accuracy of ASM calling, only regions with at

least three CpGs covered by more than ten reads per allele were

considered. ASM CpGs were then defined as CpGs with Fisher’s

exact test p value< 0.05. Hap-ASM regions were defined as regions
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with R20% methylation difference after averaging all CpGs

covered, and a Wilcoxon p value corrected for multiple testing

by Benjamin-Hochberg method < 0.05 (FDR at 5%). We ranked

the ASM regions by allelic asymmetry using the geometric mean

of the methylation difference, number of ASMCpGs, and percent-

age of ASM CpGs among all covered CpGs. Data post-processing

was performed by R. Although this study focuses on hap-ASM,

genomic imprinting also produces ASM, affecting approximately

100 DMRs. Therefore, we used the GeneImprint database to flag

all known imprinted chromosomal domains, which additionally

served as positive internal controls for ASM detection in our exper-

iment. ASM regions within 575 kb of the transcription starting

site of known imprinted genes were not considered as hap-ASM

and are listed separately in Table S5.

Validations and Fine-Mapping of Hap-ASM DMRs via

Targeted Bis-Seq
Targeted bis-seq was utilized for validation and fine-mapping of

hap-ASM and mQTL regions. Primers (Table S2) were designed in

MethPrimer, and bisulfite-converted DNA was amplified by

PCR, followed by either Sanger or Nextgen (Illumina MiSeq)

sequencing. Sample preparation for MiSeq was performed on a

Fluidigm AccessArray high-throughput PCR machine with sample

bar-codes incorporated in a second round of PCR, as described.14

PCRs for Sanger and MiSeq were performed in triplicate and

pooled to ensure sequence complexity. For Sanger sequencing,

PCR products were cloned using the TopoTA Cloning System (In-

vitrogen) as described.22 ASM was assessed when the coverage was

at least 10 clones per allele for Sanger sequencing and 100 DNA

fragments for MiSeq sequencing. Although the absolute differ-

ences between methylation of the two alleles are not exaggerated

by very deep sequencing, the p values tend to zero as the number

of reads increases. Therefore, to allow comparisons with the

Sanger sequencing data, for the MiSeq data we carried out boot-

strapping (1,000 random samplings, 20 reads per allele). Signifi-

cance of methylation differences between alleles was assessed via

the Wilcoxon test. Samplings and bootstrapping were performed

with R. For graphical representations of the MiSeq data, one repre-

sentative sample is shown.

Bis-Seq Analysis of 5mC and 5hmC
To assess the relative contributions of 5mC and 5hmC to ASM, we

used the TrueMethyl 6 kit (CEGX), according to the instructions of

the manufacturer. This chemical conversion-based approach uses

bis-seq of multiple clones to separately score 5mC-only, so that

the percent contribution of 5hmC to net methylation at each

CpG can be inferred from the difference of net methylation

observed using oxy-bis-seq and traditional bis-seq. For this pur-

pose, we required at least 12 clones per allele for both oxy-bis-

seq and traditional bis-seq.

Annotation of Hap-ASM and mQTL Regions and

Bioinformatic Enrichment Analysis
To annotate hap-ASM loci and mQTLs, we defined small (200 bp,

500 bp) and large (150 kb) windows centered on each informative

region for the hap-ASM DMRs and centered on each informative

CpG for the mQTLs. The small windows were used to assess

mechanistic hypotheses involving local sequence elements and

chromatin states, and the large windows were used as an approx-

imation of haplotype blocks for assessing proximity of hap-ASM

DMRs and mQTLs to GWAS peaks. From the UCSC Genome
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Browser (GRCh37 assembly), we downloaded RefSeq annotations,

CpG islands, conserved elements, repetitive elements, and CTCF

and TF peaks and motif occurrences in all cell lines from ENCODE

and related projects (GEO: GSE29611, GSE27584, GSE30263,

GSE31477).23,24 Chromatin states in lung, heart, liver, placenta,

T cell, brain, astrocyte, and H9-neurons were downloaded from

the Roadmap Epigenomics project (GEO: GSE18927). We aggre-

gated the 70 cell lines queried for CTCF binding peaks into 17

cell types (Table S3) and classified CTCF peaks by strength accord-

ing to the 25th, 50th, and 75th percentile of all peak values. Cell

restricted, multi-cell, and pan-cell peaks were defined with the

25th, 50th, and 75th percentile of the number of cell types. For

analyzing CTCF binding site motifs, we scored occurrences of

the canonical sequence identified by ENCODE, as well as de

novo predicted motifs identified by Kheradpour and Kellis.23

GWAS traits and associated SNPs were downloaded from NHGRI.

We used BedTools to intersect the genomic coordinates of our

informative and hap-ASM/mQTL regions to the coordinates of

the annotation sets, using 150 kb windows for GWAS traits/SNPs

and gene name annotations and 200 bp and 500 bp windows

for annotations of local sequences and chromatin features.

To test whether hap-ASM occurs at specific types of sequences

more often than random expectation, we used univariate logistic

regression with hap-ASM or mQTL as the dependent variable

and the tested sequence feature as the explanatory covariate.

Because hap-ASM regions have different sizes, to avoid bias due

to a higher probability of longer regions to overlap with regulatory

elements, enrichment analysis was carried out with fixed win-

dows. To test for robustness, we ran each analysis with two

different window sizes, 200 bp and 500 bp, centered on each

DMR. Because the denominator for the enrichment analyses de-

pends on the platform, we performed all enrichment analyses

separately for hap-ASM DMRs and mQTLs. To test the effect of

ASM CpG density, hap-ASM regions were categorized as three

levels, with 3, 4–5, and >6 ASM CpGs. The tested regulatory

element was defined as the dependent variable and hap-ASM, cate-

gorized according to the number of hap-ASM CpGs, was the

explanatory covariate. Multivariate logistic regression was used

to adjust for the number of CpGs, so that CpG-rich hap-ASM re-

gions would not be compared to CpG poor regions. For enrich-

ment analysis of polymorphic CTCF binding sites and TF binding

sites (TFBS) among hap-ASM regions, polymorphic sites were

defined as motif occurrences in a 200 bp window containing at

least one informative SNP. For the 500 bp window and mQTLs,

polymorphic binding sites was defined as motif occurrences con-

taining at least one SNP with minor allele frequency R 0.2,

because based on our sample size, rarer SNPs were unlikely to be

sufficiently informative. The effect of polymorphisms on CTCF

and TF binding likelihood was estimated for each allele by their

position weight matrix (PWM) score:

X
i;j

pi;jlog
�
pi;j

.
pb
�
:

Here pi,j is the probability of the nucleotide for each position in

the PWM from the ENCODE data, and pb the nucleotide back-

ground frequency assuming equal probabilities of each nucleotide

(pb ¼ 0.25). For motif occurrences with a PWM score > 3, correla-

tions between allelic difference of methylation and difference of

PWM score were assessed via linear regression.

To assess DMR boundaries, we used our T cell mQTL dataset.

Because estimation of the boundaries is limited by 450K CpG

coverage, we looked for mQTL CpGs in CpG-rich regions, with
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at least one CpG in the proximate 500 bp, one CpG between

500 bp and 1,000 bp, one CpG between 1,000 bp and 2,000 bp,

and one CpG after 2,000 bp, upstream and downstream of the in-

dex CpG. The boundaries of mQTLs were defined as at least two

consecutive CpGs whose methylation lacked significant correla-

tion with the index SNP. Fine mapping of hap-ASM DMRs directly

via the Agilent Methyl-Seq data was performed on seven hap-ASM

regions for which the 2 kb upstream and downstream flanking re-

gions contained at least one heterozygous SNP in samples with

hap-ASM. For eQTL enrichment analysis, genes in 150 kbwindows

spanning ASM DMRs and mQTLs were annotated with the eQTL

browser. The distance to eQTLs was defined as the distance to

the transcriptional start site of the genes showing eQTLs. Analyses

were performed with R and STATA statistical software.
Results

Methyl-Seq in Multiple Primary Human Tissues

Produces Maps of Hap-ASM

The terms mQTL and hap-ASM are related, but not synon-

ymous. Although they both describe the same class of

allelic asymmetry, in which the DNA methylation on

each allele is sequence dependent, they are mapped by

different strategies (Material and Methods and Figure S1).

To test pan-tissue mechanisms and identify ASM DMRs

near statistical peaks from diverse GWA studies, our

Methyl-Seq sample set included diverse human tissues,

including brain, T cells, placenta, liver, heart, and lung

from different individuals (Table S1). In contrast, our

array-based approach for mapping mQTLs utilized larger

numbers of samples, concentrating on T cells, brain, and,

in a smaller set, placentas. In total, the two approaches pro-

vided information on 3.7 million CpGs in the Methyl-Seq

data to directly identify ASM, and 485,000 CpGs in the

array-basedmethylation data, whichwe used with Illumina

2.5M SNP array data to identify mQTLs.

By Methyl-Seq, we obtained a median fragment length

of 200 bp and mean depth of coverage in the targeted re-

gions ranging from 50 to 94 across the samples, with

80% of these regions covered by more than 20 reads

(Figure S2). We were able to query 278,897 CpGs located

in the same fragments as 44,851 index SNPs. Among

them, 42,904 CpGs (15%) showed significant asymmetry

of fractional methylation between the two alleles by

Fisher’s exact test at p < 0.05. Asymmetric methylation re-

sulting from the loss of CpG sites due to the presence of

SNPs accounted for 30% of these CpGs (12,856 CpGs).

Such sites can be interesting for gene regulation, but for

our subsequent analyses we did not consider these geneti-

cally polymorphic CpGs as having ASM. Thus, from this

experiment we brought forward 30,048 CpGs with bona

fide ASM for bioinformatic enrichment analyses.

Because analyzing epigenomic data both at the level of

the individual CpG and the differentially methylated re-

gion (DMR) improves specificity and is crucial for testing

mechanisms,25 we used both approaches. To identify

strong ASM DMRs, ASM regions were defined by at least
erican Journal of Human Genetics 98, 934–955, May 5, 2016 937



three CpGs with significant allelic asymmetry in fractional

methylation (Fisher’s exact test p < 0.05). We further

required at least two contiguous CpGs with ASM, and an

absolute difference in fractional methylation of R20% be-

tween alleles after averaging over all covered CpGs in the

DMR. The significance threshold for the difference in frac-

tional methylation between alleles was set at a Wilcoxon

test p value with multiple testing correction < 0.05 (FDR

at 5%). With these cut-offs, we found 795 strong

hap-ASM regions, representing 2% of all informative

SNP-containing regions (Figure S2 and Table S4). Some of

the hap-ASM DMRs overlapped with promoter sequences

near transcriptional start sites, but most were intergenic

or intronic, with a modest enrichment in intergenic re-

gions (OR ¼ 1.3, p ¼ 0.001). CpG islands were represented

among the hap-ASM DMRs but were not found to be en-

riched (Figure S3). Interestingly from an evolutionary

perspective, conserved sequence elements were signi-

ficantly under-represented among hap-ASM DMRs

compared to polymorphic regions without hap-ASM

(OR ¼ 0.74, p ¼ 9 3 10�5).

In the above analyses we deliberately excluded all CpG-

containing reads thatmapped toknown imprintedchromo-

somal domains. However, we identified other clusters of

reads with ASM mapping within 150 kb windows centered

on 47 known imprinted genes (Table S5). This finding of

multiple imprinted loci, representing a 5-fold increase over

random expectation (p¼ 63 10�29), serves as a positive in-

ternal control for our overall experiment. As supported by

our targeted bis-seq in series of heterozygous individuals

(below), the large majority of ASM loci revealed by the

Methyl-Seq data in fact represent hap-ASM, not imprinting.

Identification and Mapping of Hap-ASM in ZFP57,

a trans-Regulator of Genomic Imprinting

Hap-ASM in a gene with interesting biological functions

can provide a concrete example of our Methyl-Seq and

mQTL findings. We used targeted bis-seq to fine-map a

hap-ASM DMR and mQTL that our data had revealed

3.5 kb upstream the transcription start site of ZFP57

(MIM: 612192) on chromosome 6 (Figure 1 and Table 1).

This gene, in the KRAB domain-containing ZNF superfam-

ily, is not imprinted (confirmed by binomial test in our

series of heterozygotes), but it codes for a TF that is an

important trans-acting regulator of DNA methylation im-

prints.26,27 The bis-seq data from a contig of 12 amplicons,

each covering a high frequency (i.e., informative) SNP and

at least three CpGs, showed that hap-ASM in this region

spans a discrete DMR of 2 kb, with allelic asymmetry in

6/6 T cell samples tested (Figure 1). This DMR is located

between a GWAS SNP associated at sub-threshold sig-

nificance with migraine (MGR1 [MIM: 157300]; p ¼
9 3 10�6) and another with multiple sclerosis (MS

[MIM:126200]; at supra-threshold significance, p ¼ 10�17).

Additional validations of hap-ASM in T cells and brain

samples are in Figure 2, and our mapping of the hap-

ASM region in brain revealed the same DMR as in T cells
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(Figure S4). Of mechanistic importance (see below), these

data show that the ZFP57 hap-ASM DMR precisely over-

laps an ENCODE CTCF binding peak (Figures 1 and S4).

To further assess tissue specificity, we carried out targeted

Nextgen bis-seq in a wider range of tissues from multiple

individuals and found that hap-ASM is strong in T cells

and brain, weaker in colon, heart, liver, lung, and mono-

cytes, and absent in placenta, where the DMR is bialleli-

cally hypomethylated (Figure S4).

Pan-tissue and Tissue-Specific mQTLs in

T Lymphocytes, Brain, and Placenta

We next assessed cis-regulated mQTLs in T cells, brain tem-

poral cortex (TC) graymatter, FANS-isolated NeuN-positive

TC neurons, FANS-isolated non-neuronal TC cells (NeuN-

negative; hereafter referred to as glia, but understood to

include other cell types such as microglia), and placenta.

Overall, 138 samples were included in this discovery phase

(Table S1). Because previous reports have shown that CpG

methylationatmQTLs correlatesmost stronglywithnearby

SNPs,8 we restricted our analyses to CpGs in 150 kb win-

dows centered on each index SNP. This window size is in

fact sufficient to capturemost cis-regulatedmQTLs, as indi-

cated by the decay curve of the correlation coefficients in

our data (Figure S5). Overall, 451,419 CpGs were informa-

tive in T cells, 450,805 in brain TC, 444,047 in neurons,

447,867 in glia, and 450,631 in placenta. Using linear

regression corrected for multiple testing, we assessed corre-

lations between genotypes andmethylation for each index

SNP-CpG pair, defining anmQTL by p value and effect size,

namely a significant linear correlation (p value corrected for

multiple testing < 0.05), R-squared R 0.5, reflecting the

goodness of fit to the linear model, and a regression b coef-

ficient associated with genotypeR 0.1, corresponding to a

difference in net methylation between the two alleles R

0.2. The importance of combining statistical significance

and effect size criteria is highlighted by the examples in

Figure S1. Using these criteria, we identified 1,440 mQTL

CpGs in Tcells, 737 in unfractionated brain TC, 364 in neu-

rons, 867 in glia, and 866 in placenta (Figure S2 and Tables

S6–S10). Like the hap-ASM loci, the mQTLs were enriched

in intergenic CpGs (OR ¼ 1.9, p ¼ 2.1 3 10�63), with pro-

moter CpGs being present but relatively under-represented

(OR ¼ 0.68, p ¼ 5.5 3 10�21; Figure S3).

We found marked tissue specificity among the sets of

mQTLs (Figures 1, 2, and S6). As expected, most of the

mQTLs in unfractionated brain TCwere also found in puri-

fied neurons or glia (61%), but only 28% ofmQTLs in brain

tissue and purified brain cells overlapped with mQTLs in

T cells, and 12% with mQTLs in the placentas. To further

assess cell type specificity, we superimposed informative

CpGs in neurons and glia and identified 188 neuron-

restricted (or neuron-stronger) and 602 glia-restricted

(glia-stronger) mQTL CpGs (Figure 2). Because most of our

neuron and glia preparations were paired samples from

the same brains, we were able to perform a sub-analysis

including only the paired samples, which confirmed the
016



Figure 1. Hap-ASM DMRs and mQTLs in
the HLA Region on Chromosome 6, and
Targeted Bis-Seq Defining a Hap-ASM
DMR Upstream of ZFP57
(A) Map of hap-ASM and mQTLs on
chromosome band 6p22.1. The tracks
show �log10 q values for hap-ASM DMRs
in the overall Methyl-Seq dataset and for
mQTLs in each of the indicated tissues.
Although there are some pan-tissuemQTLs,
most are tissue specific. As explained in the
text, the net yield of loci from the hap-
ASM and mQTL approaches is additive.
(B) Zoomed-in view of ZFP57, showing
relevant ENCODE tracks and the ampli-
cons utilized for targeted bis-seq.
(C) Results of targeted bis-seq showing that
the ZFP57 hap-ASM DMR spans approxi-
mately 2 kb in T cells. The major DMR
(amplicons in the gray rectangle) precisely
overlaps a strong CTCF ChIP-seq peak and
is located between two GWAS SNPs, one
associated with migraine (p ¼ 9 3 10�6)
and the other with multiple sclerosis
(p ¼ 10�17). A weaker DMR is found over-
lapping a second CTCF peak (amplicon
11). Circles represent consecutive CpGs,
with each line being a unique read. White
circles are unmethylated CpGs and black
circles are methylated CpGs. Alleles 1 and
2 represent the methylated and unmethy-
lated alleles in these heterozygous samples.
Wilcoxon p values and methylation differ-
ences were calculated by bootstrapping
(1,000 sampling of 20 reads per allele)
and are indicated only for significant
hap-ASM (D fractional methylation >
0.2, >3 ASM CpGs, and p < 0.05). One
representative random sample of each
allele (20 reads per allele) is shown. Valida-
tions and fine-mapping of this DMR
in other tissues and cell types are in Fig-
ures 2 and S4. D, absolute difference in
percentage of methylation between alleles
in heterozygous samples; q value, p value
corrected for multiple testing using the
Benjamini-Hochberg method; values are
from bootstrapping.
cell type specificity (Figure S6). This situation is illustrated

by our targeted bis-seq data for a GWAS peak-associated

hap-ASM region upstream of NGFR (MIM: 162010), coding

for the NGF receptor that binds neurotrophins.28 The re-

sults confirmed ASM that is strong in neurons, moderately

strong in T cells, and weak or absent in glial cells and

placenta (Figure S7). As we show below, allele-specific TF

binding site occupancy is one mechanism of hap-ASM

andmQTLs, and it can partly explain this tissue specificity.

However, differences in global methylation levels between

tissues probably also play a role. Such differences are

revealed in our data by comparing the mean CpG methyl-

ation levels genome-wide in T cells, brain, and placenta,

expressed as Kernel density plots in Figure S2, which show

that the most divergent tissue for mQTLs and hap-ASM,

the placenta, has global CpG hypomethylation compared

to the other two tissues.
The Am
As an important technical and biological point, among

the 44 adult TC gray matter samples in this experiment,

22 were without significant neuropathological changes

and 22 showed neuropathological findings of moderate

to severe late-onset AD. To test for possible AD-specific ef-

fects on DNA methylation in the brain mQTLs, we carried

out multivariate linear regression including the genotype,

the disease status, and the interaction term between

disease status and genotype. This procedure revealed no

significant AD-specific effects on DNA methylation at the

mQTL CpGs, and no differential genotype effects on

methylation levels in AD compared to controls (Tables

S7–S9). This finding of little influence of AD neuropa-

thology on DNA methylation patterns is consistent with

the low yield of differentially methylated loci in prior

case-control studies,29–32 particularly those passing a

p value corrected for multiple testing < .05 and fractional
erican Journal of Human Genetics 98, 934–955, May 5, 2016 939



Table 1. Examples of Disease-Relevant Loci with Hap-ASM or mQTLs

Primary
Dataset and
Ranking for
Strength of
Hap-ASM
or mQTL

SNP in Phase
with Hap-ASM
or mQTLa

Closest Genes
in 150 kb
Window

Targeted
Bis-Seq
Validationsb

GWAS Signals in 150 kb Window
Centered on Hap-ASM DMR or mQTL

Immune System

hap-ASM (15);
mQTL (33)

chr1: rs9330298;
cg08477332

S100A*,
SNAPIN, ILF2

brain: 7/8;
T cell: 7/7

rs7536700; myeloma;
p ¼ 4.00 3 10�6

– –

hap-ASM (107);
mQTL (302)

chr5: rs2549004;
cg21138405

IRF1, IL5, RAD50 brain: 1/7;
T cell: 9/12

rs11745587; asthma;
p ¼ 2.00 3 10�6

rs12521868; CD;
p ¼ 1.00 3 10�20

rs2188962; IBD;
p ¼ 1.00 3 10�52

hap-ASM (179) chr6: rs1565443;
haplotype:
rs1565441;
rs1565442;
rs1565443;
rs6937877;
rs9364402

FRMD1 brain: 0/10;
T cell: 7/15;
T cell: 7/7

rs1473500 ; Immune
resp.; p ¼ 3.00 3 10�7

– –

hap-ASM (183) chr12:
rs12304510

CLECL1, CD69,
CLEC2D

brain: 0/7;
T cell: 5/9

rs10466829; MS;
p ¼ 1.00 3 10�8

rs4763879; T1D;
p ¼ 2.00 3 10�11

rs11052552; T1D;
p ¼ 7.00 3 10�7

hap-ASM (45) chr19:
rs10411630

CCDC155,
DKKL1, TEAD2

brain: 5/8;
T cell: 2/3

rs2303759; MS;
p ¼ 5.00 3 10�9

– –

hap-ASM (137) chr19:
rs12975442

EVI5L, MAP2K7,
TGFBR3L

GM12878; LBCL rs558718;
HIV-1 control;
p ¼ 4.00 3 10�6

– –

Immune System and Brain

hap-ASM (61);
mQTLc (23)

chr6:
rs78274956;
cg05844871

HLA-DRB6 brain: 9/9;
T cell: 1/6

rs4530903; SCZD;
p ¼ 5.00 3 10�6

rs9271192; AD;
p ¼ 3.00 3 10�12

rs3828840; MS;
p ¼ 5.00 3 10�15

hap-ASM (16);
mQTL (279)

chr6: rs2747429;
cg16885113

ZFP57, MOG,
HLA-F

brain: 4/4;
T cell: 5/5

rs3095267; migraine;
p ¼ 9.00 3 10�6

rs2523393; MS;
p ¼ 1.00 3 10�17

rs9258260; CD;
p ¼ 2.00 3 10�10

mQTL (58) chr17:
rs2412102;
cg10163794

PHB, NGFR neur: 4/4;
glia: 0/2;
T cell: 4/4

rs16948200 ;
immune resp.;
p ¼ 2.00 3 10�8

rs1035050; bipolar;
p ¼ 9.00 3 10�6

–

Brain

hap-ASM (440) chr2:
rs11684605

PXDN, MYT1L brain: 4/8;
T cell: 0/8

rs6735179;
antipsychotic Rx;
p ¼ 1.00 3 10�7

– –

hap-ASM (65) chr3: rs9838223 CMTM8, GPD1L brain: 7/11;
T cell: 0/5

rs9825310; alcohol
dep.; p ¼ 8.00 3 10�6

rs4380451; bipolar;
p ¼ 4.00 3 10�6

–

hap-ASM (527) chr7:
rs35487364

PTPRN2 brain: 2/12;
T cell: 0/6

rs6459804;
bipolar, SCZD;
p ¼ 8.00 3 10�6

– –

mQTL (116) chr22:
rs7893689;
cg04065885

CELF2 glia: 6/6 rs201119; AD;
p ¼ 1.00 3 10�8d

rs2242451; AD;
p ¼ 0.003d

–

To test the validity of our criteria for calling hap-ASM and mQTLs, we deliberately chose loci in a wide range of strength of allelic asymmetry (rankings) and with at
least one nearby GWAS signal associated with a disease-relevant tissue or cell type. The results of bis-seq (numbers of heterozygotes with allelic asymmetry in
methylation of total numbers of heterozygotes) highlight tissue specificity of the hap-ASM. In addition, two of these regions showed inter-individual differences
in the presence or absence of hap-ASM. For one of them, the FRMD1 region, we showed that extended haplotypes rather than the index SNP alone dictate methyl-
ation asymmetry (Figure S11). Many of these loci are in genomic regions with sub-threshold GWAS signals, and in these situations, the epigenetic data provide
independent evidence for biological significance. GWA datawere obtained from theNHGRI-EBI GWASCatalog. References for GWAS are listed in the Supplemental
Data, as well as additional references for candidate genes. Abbreviations and OMIM numbers are as follows: AD, Alzheimer’s disease; Alcohol dep., alcohol depen-
dence; antipsychotic Rx, response to antipsychotic therapy (MIM:NA); bipolar, bipolar affective; CD, Crohn disease; HIV-1 (HIV-1, susceptibility to [MIM: 609423]);
Immune response, immune response to smallpox (MIM: NA); IBD, inflammatory bowel disease (IBD1 [MIM: 266600)]); MS, multiple sclerosis; Myeloma, multiple
myeloma; SLE, systemic lupus erythematosus (SLE [MIM: 152700]); SCZD, schizophrenia; T1D, type I diabetes mellitus; ALG12 (MIM: 607144), ARC (MIM:
604223), ARL11 (MIM: 609351), BRD1 (MIM: 604589), DKKL1 (MIM: 605418), EBPL (MIM: NA), EVI5L (MIM: NA), GPD1L (MIM: 611778), HLA-F (MIM:
143110), IL5 (MIM: 147850), JRK (MIM: 603210), MAP2K7 (MIM: 603014), MOG (MIM: 159465), PHB (MIM: 176705), PSCA (MIM: 602470), RAD50
(MIM: 604040), RCBTB1 (MIM: 607867), SNAPIN (MIM: 607007), TEAD2 (MIM: 601729), TGFBR3L (MIM: NA), ZBED4 (MIM: 612552), NA, not available.
aHighest ranking index SNPs and CpGs are listed here; see Tables S4 and S6–S10 for complete lists and SNPs in phase with mQTLs.
bHeterozygotes assessed by Agilent Methyl-Seq and/or targeted bis-seq.
cThe 150 kb window centered on this validated DMR contains 29 additional mQTLs in brain including cg20532376, cg00119778, cg13972202, cg10466124,
cg18111114, cg00103771, cg07984380, cg13910785, cg19575208, cg08845336, and cg00598125 (Table S7).
dAD-associated SNPs were reported in Lee et al.67 and Wijsman et al.68
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Figure 2. Genome-wide Data and Tar-
geted Bis-seq Highlight Pan-tissue and
Tissue-Restricted Hap-ASM
(A) Venn diagrams of mQTLs identified in
placenta, brain, T cells, neuron, and glia,
showing that although pan-tissue mQTLs
can be found, the majority of mQTLs are
tissue or cell type specific. Only mQTLs
withCpGs-SNP pairs that were informative
in every tissue are considered here. Thus,
the numbers in these diagrams are some-
what smaller than the total mQTLs listed
in the Tables S6–S10.
(B) Validation of hap-ASM regions identi-
fied in the S100A** cluster, ZFP57,
CCDC155, FRMD1, CLECL1, PXDN, and
HLA-DRB**. Whereas hap-ASM in the
S100A** cluster, ZFP57, and CCDC155 is
robust in both T cells and brain, the hap-
ASM DMRs in FRMD1 and CLECL1 are
strong in T cells but weak or absent in
brain. Conversely, hap-ASM in PXDN and
HLA-DRB6 is significant in brain but not
or only weakly in T cells. Alleles A and B
represent, respectively, the reference and
alternative allele of one heterozygous sam-
ple. The p values were calculated as in
Figure 1. Table 1 lists the number of hetero-
zygous samples subjected to bis-seq.
Figures 3, 4, and S10–S17 show bis-seq val-
idations in additional samples and loci.
methylation difference R 0.1, which corresponds to the

sensitivity of Illumina Beadchip arrays.33,34 The AD-associ-

ated CpGs from the largest of those studies30–32 showed no

significant differences inmethylation between the AD case

and control subjects in our dataset (differences in mean

fractional methylation ranging from 0.00003 to 0.06,

with 95% less than 0.03, consistent with Lunnon et al.,31

and none passing FDR at 0.5; Table S12). Nonetheless, as

we discuss below, our mQTL and hap-ASM data from brain

cells are in fact useful as an adjunct to GWAS data for

mapping genes and regulatory sequences that underlie in-

ter-individual differences in AD susceptibility.

ASM and mQTL Screens Are Complementary

Approaches

When we compared the informative regions between our

mQTL and Methyl-Seq datasets, we found little overlap,

with only 4.5% of the informative 450K CpGs queried by
The American Journal of Huma
Methyl-Seq and, conversely, 40% of

the informative Methyl-Seq regions

covering at least one informative

450KCpG.Only 2%of the array-infor-

mative CpGs and 16% of Methyl-Seq-

informative regions were assessed by

the same informative SNPs in both

approaches Thus, as shown for one

chromosomal region in Figure 1A

and summarized globally in Figure S2,

combining the two methods gives an
additive yield, allowing a more comprehensive profiling of

hap-ASM, and its surrogate mQTLs, through the genome.

Hap-ASM and mQTLs Highlight Regulatory Regions

near Supra- and Sub-threshold GWAS Peaks Associated

with Immunological and Neurological Disorders

Overlapping our datawith theGWAS catalog,we found397

strong hap-ASM regions from our multi-tissue experiment

and 778 T cell, 395 brain (unfractionated TC), 204 neuron,

483 glia, and 474 placenta mQTLs with at least one GWAS

SNP in a 150 kb window centered on the mQTL or hap-

ASM DMR. These loci are listed and ranked by strength of

allelic methylation asymmetry in Tables S4 and S6–S10.

To focus on the loci of greatest interest, we next narrowed

our search to GWA traits relevant to the tissue or cell type

in which we had identified the hap-ASM or mQTL. This

procedure revealed 61 hap-ASM DMRs and 257 T cell,

148 brain, 81 neuron, and 179 glia mQTLs located within
n Genetics 98, 934–955, May 5, 2016 941



Figure 3. Fine-Mapping of Hap-ASM in
the S100A*-ILF2 Region, Containing a
Sub-threshold GWAS Signal for Multiple
Myeloma, Reveals DMRs Overlapping
with CTCF Binding Sites
The map and genome browser tracks show
a strong hap-ASM DMR identified by both
Methyl-Seq and mQTL analysis. The DMR
is validated by targeted bis-seq in an inter-
genic region of the S100A* gene cluster,
located 70 kb from a subthreshold GWAS
peak (p ¼ 43 10�6) for multiple myeloma.
The DMR (solid rectangle) overlaps exactly
with a CTCF ChIP-seq peak, with the index
SNP located in the CTCF binding motif.
A second weaker hap-ASM region identi-
fied by the fine-mapping in T cells and by
mQTL analysis, overlaps another CTCF
peak (dashed rectangle). Amplicon 9 con-
tains a SNP CpG eliminating the CpG on
the hypomethylated allele. Nextgen bis-
seq (MiSEQ) was performed for all ampli-
cons, except amplicons 8 and 10 (*, Sanger
sequencing). For the MiSEQ data, the
p values were calculated as in Figure 1.
For Sanger sequencing, we required at least
ten clones per allele.
75 kbof tissue-relevantGWASpeaks (Tables S4 and S6–S10).

Hap-ASM loci were often located near GWAS peaks, but

were not specifically enriched for such locations. However,

the combined larger sets of brain and T cell mQTLs were

moderately but significantly enriched within 150 kb win-

dows centered on GWAS peaks (OR ¼ 1.3, p ¼ 1.8 3 10�9).

Targeted Bis-Seq of Hap-ASM and mQTL Regions

Validates the Genome-wide Data, Localizes DMR

Boundaries, and Reveals Inter-individual Variability

We next selected additional genes for validations and fine-

mapping of their DMRs using Nextgen and Sanger bis-seq.

As shown in Table 1, these loci included six hap-ASM

DMRs near immune-related GWAS peaks, four hap-ASM

DMRs near GWAS peaks for neurological phenotypes,

and three hap-ASM DMRs in chromosomal regions with

multiple GWAS peaks for both immune- and brain-related

phenotypes. The results confirmed hap-ASM in 12/13 of

these loci (Figures 1, 2, 3, 4, S4, S7, and S10–S17), including

7 chromosomal regions with supra-threshold GWAS

signals of p < 5 3 10�8 and 5 chromosomal regions

with sub-threshold GWAS signals (p ¼ 9 3 10�6 to p ¼
1 3 10�7). Among these examples are candidate suscepti-

bility loci for AD, bipolar disorder (BPAD [MIM: 125480]),

multiple sclerosis, type I diabetes mellitus (IDDM [MIM:

222100]), Crohn disease (IBD1 [MIM: 266600]), immune
942 The American Journal of Human Genetics 98, 934–955, May 5, 2016
response to a vaccine, and other rele-

vant medical phenotypes. Although

several of these hap-ASM DMRs were

detected in multiple tissues, in our

validations comparing brain and

T cell samples, we found that hap-
ASM in the CLECL1 (MIM: 607467) and FRMD1 (MIM:

NA) regions is mostly or entirely T cell specific, whereas

hap-ASM in the MYT1L (MIM: 613084) and CMTM8

(MIM: 607891) regions is mostly or entirely brain specific

(Table 1). In addition, validation of hap-ASM in the

NGFR region in paired neuron and glia from the same indi-

viduals showed strong hap-ASM in neurons and weaker or

absent hap-ASM in glia (Figure S7). Thus, hap-ASM can

provide localizing data and support for the biological

relevance of GWAS signals in a tissue- and cell-type-specific

manner.

Interestingly, for some of the DMRs, hap-ASM was

observed only in a subset of the heterozygous samples

from a given tissue or cell type (Table 1). Such variation

might be explained either by environmental effects on

the epigenetic patterns or by a genetic mechanism in

which the combined effect of several SNPs in a haplotype

block, not just the index SNP, could dictate the presence

or absence of hap-ASM. To test the latter possibility, we

focused on the FRMD1 region, which showed hap-ASM

in about half of the heterozygous T cell samples. We geno-

typed 10 heterozygous individuals using a 600 bp ampli-

con centered on the index SNP, with cloning and Sanger

sequencing of the clones. Based on the resulting phased

haplotypes, we found that 5/5 of the samples with hap-

ASM shared the same extended haplotype including



Figure 4. Hap-ASM in the Upstream Pro-
moter Region of the Immune Phenotype-
Associated IRF1 Gene
The map and browser tracks show the
two hap-ASM DMRs identified from Agi-
lent Methyl-Seq (black rectangles) in the
region immediately upstream of IRF1.
The 150 kb window centered on the
hap-ASM DMRs contains immune-related
GWAS peaks tagged by SNPs rs12521868
and rs4143832 (GWAS p values 10�20 and
10�10, respectively). Hap-ASM is consis-
tently observed in T cells and is much
weaker in brain, which confirms the pres-
ence of mQTL only in T cells. Unlike the
hap-ASM in the S100A* cluster, here the
‘‘shoulders’’ around the hap-ASM are
biphasic, low methylated and high methyl-
ated, regions. The DMR is coincident with
a dynamic chromatin region, poised in
embryonic stem cells and active in differ-
entiated cells. Representative samples of
each queried tissue are shown. p values
were calculated as in Figure 1. Abbrevia-
tions are as follows: *, Sanger sequencing;
GM12878, lymphoblastoid cell line,
H1-ESC, human embryonic stem cell,
K562, leukemia cell line, NS, not signifi-
cant; chrom., chromatin states from the
Roadmap Epigenomics project.
rs1565441, rs1565442, rs1565443, rs6937877, and

rs9364402 in the heterozygous configuration AAAA/BBBB

(Figure S11). Conversely, none of the samples that were

negative for hap-ASM had this haplotype configuration,

instead having other configurations such as AAAA/AABBB

(Figure S11). To confirm this finding, we carried out addi-

tional bis-seq and genotyping in two pairs of monozygotic

twins heterozygous for the index SNP, in which one pair

showed hap-ASM and the other did not. The pair with

hap-ASM carried the AAAAA/BBBBB haplotype configura-

tion, whereas the pair that was negative for hap-ASM did

not (Figure S11). These results show that extended haplo-

types, rather than single proximal SNPs, dictate the allelic

asymmetry at some hap-ASM DMRs.

To exclude imprinting as an explanation for ASM at any

of these loci, we tested the probability of ASM under the

imprinting hypothesis, namely that methylation of an

allele is determined by the parent of origin, not the local

haplotype. Using genotypes of the index SNPs, the

imprinting hypothesis, which predicts a random, geno-

type-independent pattern of ASM, was rejected (binomial

test p value < 0.05) for 10 of the 12 loci with validated

ASM, and not conclusive for the remaining two DMRs

because of the small number of heterozygotes. This

outcome gives strong confidence that the large majority

of ASM DMRs identified by our genome-wide screen

indeed represent hap-ASM, not genomic imprinting.
The American Journal of Huma
Lastly, because the ‘‘sixth base’’

5-hydroxy-methylcytosine (5hmC) is

abundant in brain and especially
neurons, we carried out oxy-bis-seq for three brain-associ-

ated hap-ASM DMRs. This procedure showed that both

5mC and 5hmC contribute to hap-ASM, making contribu-

tions to the allelic asymmetry in the same direction

(Figure S18).

DMR Mapping and Bioinformatic Enrichment

Analyses Support Variation in CTCF and TF Binding

Sites as a Mechanism Underlying Hap-ASM and

mQTLs

Fine-Mapping of Hap-ASM Shows Discrete DMRs Overlapping

with Regulatory Sequences

Determining the boundaries of DMRs is crucial for testing

mechanistic hypothesis, but most prior studies have not

defined such boundaries. The examples of hap-ASM that

we mapped previously,14 and the ZFP57 DMR described

above, are all small discrete regions, 1 to 2 kb in size. To

see whether these findings would generalize, we asked

whether our 450K data had sufficient CpG coverage to

define DMR boundaries. Inferring DMR sizes from these

data is limited by the CpG coverage of the Beadchips, so

to overcome this limitation, we analyzed our largest

450K dataset, from the T cells, and focused on the 270

mQTL CpGs in the most CpG-rich, and thus most infor-

mative, regions (134 mQTLs; see Material and Methods).

Putative boundaries of mQTLs were defined as the pres-

ence of at least two consecutive CpGs lacking significant
n Genetics 98, 934–955, May 5, 2016 943



correlations with the index SNPs. By this procedure, the

median DMR length was 720 bp, with 90% of DMRs span-

ning less than 2,000 bp (Figure S8). We observed higher

methylation levels in the flanking CpGs for 38% of the

DMRs, with the mQTL region corresponding to a low

methylated well. For 15% of the DMRs, the flanking

CpGs showed lower methylation levels (inverted well),

and for 47% we observed a biphasic pattern, with one

methylated and one unmethylated ‘‘shoulder’’ (Figure S8).

Taking a different approach, we used our Methyl-Seq

data and searched for hap-ASM regions for which the

2,000 bp upstream and downstream flanking regions con-

tained at least one heterozygous SNP in the samples with

hap-ASM. We identified 7 such informative regions, and

for 5 of them the DMR size was less than 2,000 bp

(Figure S9). In addition, we used targeted bis-seq to map

the boundaries of three additional hap-ASM regions from

our genome-wide discovery set. We designed contigs of

bis-seq amplicons upstream and downstream of DMRs in

the S100A* cluster (chr1), PXDN (chr2), and IRF1 (chr5) re-

gions (S100A13 [MIM: 601989], S100A14 [MIM: 607986],

PXDN [MIM: 605158], IRF1 [MIM: 147575]). We required

each amplicon to cover a high-frequency SNP and at least

three CpGs. From the resulting data, the DMRs in all three

regions were discrete, spanning from 1 to 2 kb of DNA and

having well-defined boundaries (Figures 3, 4, and S10).

Like the ZFP57 DMR, the DMR in the S100A* region was

identified in both mQTL and Methyl-Seq discovery sets

and precisely coincides with a CTCF ChIP-seq peak. More-

over, in this DMR the index SNP is in a CTCF binding site

sequence motif (Figure 3). As indicated by ENCODE data,

the PXDN-MYTL DMR coincides with polymorphic MYC

TF and CTCF binding motifs. Both motifs are associated

with cell-type-restricted ChIP-seq peaks, which can

explain the cell-type-specific hap-ASM at this locus

(Figure S10). Although the IRF1-IL5 (MIM: 147850) hap-

ASM DMRs and mQTL did not overlap a CTCF site or

known TF binding site, they were located in a region of

poised chromatin (Figure 4). These examples highlight ge-

netic variations in DNA regulatory elements as a potential

mechanism for some, though perhaps not all, examples of

hap-ASM, a hypothesis that we test globally below.

Hap-ASM DMRs and mQTLs Are Enriched in Specific Chromatin

States

The Epigenomics Roadmap consortium identified 15 chro-

matin states that show different average levels of DNA

methylation, different degrees of evolutionary conserva-

tion, and differences in several other features.35 For

example, states associated with bivalent enhancers show

a broad distribution of methylation levels, standard het-

erochromatin and heterochromatin associated with ZNF

genes and repeats (here we use the standard ENCODE

term for this class of sequences) are depleted for evolution-

arily conserved elements, and so on. Each of the 15 chro-

matin states are enriched in specific histone marks:

repressed Polycomb state in H3K27me3; bivalent enhancer

chromatin in H3K27me3 and H3K4me1; heterochromatin
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in H3K9me3, and heterochromatin associated with ZNF

genes and repeats in H3K36me3 and H3K9me3.35 As

shown in Figure S19, among both hap-ASM DMRs and

mQTLs combined across tissues, we found significant

enrichments in repressed Polycomb state, bivalent en-

hancers, enhancers, heterochromatin, and heterochro-

matin associated with ZNF genes and repeats. Conversely,

significant under-representation was found for regions

classified as active TSS state. Our analysis of the mQTL

data showed an enrichment of PRC2-bound regions and

enhancers, as well as an under-representation in active

promoters in every queried cell and tissue, whereas enrich-

ments of the other chromatin states were more tissue

dependent (Figure S20). Given that polycomb-bound and

bivalent enhancers are associated with developmentally

regulated genes36 and that polycomb-repressed states, en-

hancers, and heterochromatin are often tissue specific,

whereas active promoters and transcribed states are more

often constitutive,35 these findings indicate that hap-

ASM DMRs and mQTLs occur preferentially in develop-

mentally regulated chromatin states and are relatively

depleted in regions of constitutive chromatin.

Hap-ASM DMRs and mQTLs Are Enriched in Polymorphic and

Tissue-Specific CTCF Binding Sites

Insulator sequences occupied by CTCF are a unique chro-

matin state that regulates promoter-enhancer interactions

via chromatin looping. Because our previously published

findings,14 as well as recently published data from lympho-

blastoid cell lines,37 and the additional examples of hap-

ASM loci described above implicate CTCF binding sites in

hap-ASM, we next tested our hap-ASM and mQTL datasets

overall for statistical enrichment in CTCF ChIP-seq peaks

and polymorphic CTCF binding motifs. We defined strong

peaks as the top 25th percentile in ENCODE ChIP-seq data.

The results showed that hap-ASM DMRs are enriched in

strong CTCF peaks that are present in one or multiple

cell types (OR ¼ 2.2, p ¼ 0.001), but not in strong

CTCF peaks identified in almost all (>75%) of the assessed

cell types (Figure 5A). Similar results were obtained for

our mQTL dataset, with a stronger enrichment in cell-

type-restricted CTCF peaks than in pan-cell type CTCF

peaks (OR ¼ 3.3, p ¼ 1.8 3 10�29 and OR ¼ 1.5, p ¼
3.4 3 10�07, respectively) (Figure 5A). In contrast, weak

CTCF peaks were not enriched in either of our datasets.

In our next level of testing, we focused on CTCF binding

motifs. Because the number of canonical binding motif oc-

currences in the human genome is lower than the total

number of CTCF ChIP-seq peaks, to increase the number

of evaluable loci we combined ChIP-seq data from any tis-

sue or cell type and included both the canonical motifs and

the de novo predicted CTCF binding motifs identified by

Kheradpour et al.23 By this strategy we identified 4,164

informative regions, including 51 hap-ASM DMRs, over-

lapping with CTCF binding motif occurrences. We defined

informative motifs as those overlapping an index SNP and

divided these into three classes: (A) polymorphic motifs

with or without a CpG, (B) CpG-containing invariant
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Figure 5. Hap-ASM DMRs and mQTLs
Coincide with Low-Methylated Wells and
Are Enriched in Polymorphic CTCF Bind-
ing Sites
(A) The graphs show a strong overall
enrichment in polymorphic CTCF motifs
among both hap-ASM regions andmQTLs.
CTCF motifs were categorized into three
classes: invariant CTCF motifs without
CpG (considered as reference class),
invariant CTCF motifs with CpG, and
polymorphic CTCF motifs. Enrichment is
expressed by the odds ratio (OR) on the
y axis.
(B) Bar graph showing increasing enrich-
ment of polymorphic CTCF motifs with
the number of ASM CpGs in the DMR. To
avoid potential bias due to different CpG
density between the hap-ASM DMRs and
the background, ORs are adjusted for the
number of CpGs covered by at least 10
reads per allele. A positive correlation is
observed between OR and the number
(i.e., local density) of CpGs with ASM.
(C) The graph shows the averaged net
methylation of all CpGs within51,000 bp
of the center of all hap-ASM DMRs that
overlap polymorphic CTCF motifs. This
result indicates that hap-ASM DMRs asso-
ciated with CTCF sites are discrete and
occur in low methylated ‘‘wells.’’ Values
are binned by 100 bp (dots) and Lowess
smoothing performed (curve). The map
and net methylation data show, as an
example, the hap-ASM region associated
with SNP rs9330298 in the S100A* gene
cluster. The hap-ASM overlaps a polymor-
phic CTCF site; in the homozygous AA
sample, this is a low-methylated region,
reflecting CTCF binding, surrounded by
hypermethylated ‘‘shoulders.’’ A, reference
allele; B, alternate allele.
motifs, and (C) invariant motifs without a CpG. We ex-

pected class C motifs to have the least association with

ASM, and we therefore used them as a reference in logistic

regression. As shown in Figure 5B, hap-ASM DMRs indeed

proved to be enriched only in polymorphic CTCF motifs

(OR ¼ 3.1; p ¼ 3.5 3 10�05). We next grouped the hap-

ASM regions into three categories with increasing ASM

CpG-content (3–4, 4–5, and R6 ASM CpGs). Logistic

regression was adjusted for the number of CpGs with

good coverage so that CpG-rich hap-ASM regions are not

compared to CpG poor background. As shown in

Figure 5B, we found that enrichment in polymorphic

CTCF motifs increases with the number of hap-ASM

CpGs in the DMR. Similarly, mQTLs were strongly en-

riched in polymorphic CTCF motifs (OR ¼ 7.8; p ¼
2.23 10�69) (Figure 5B). The results were robust in each tis-

sue type (Figure S21) and were stable when using larger

500 bp windows around each index SNP. These findings

of strong enrichment in polymorphic but not invariant

CTCF motifs, with a strong hap-ASM CpG density effect,

supports allele-specific binding of CTCF as a sequence-
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dependent mechanism underlying a subset of hap-ASM

loci. We then analyzed the averaged net methylation of

all CpGs within 51,000 bp of the center of hap-ASM

DMRs that overlap polymorphic CTCF motifs (200 bp

window). We found that these hap-ASM DMRs were coin-

cident with low methylated ‘‘wells,’’ which is consistent

with selective CTCF binding to the unmethylated alleles

(Figures 5C and S21).

Lastly, to ask whether hap-ASM regions with polymor-

phic CTCF binding sites in fact exhibit allele-specific bind-

ing of CTCF, we used available whole-genome sequencing

(1000 Genomes project; SRA: SRA029810, SRA175417,

SRA062045) and ChIP-seq data (ENCODE; GEO:

GSM733752) in the GM12878 lymphoblastoid cell line.

Among our hap-ASM DMRs with polymorphic CTCF mo-

tifs, two loci were informative (heterozygous SNP genotype

and coverageR 103) in the GM12878 cells. We performed

Sanger bis-seq on GM12878 cell DNA and indeed found

hap-ASM at these loci (Figure S22). In other words,

although WGS data contained DNA fragments mapping

to both alleles for rs9330298 and rs12975442 in this cell
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line, the ChIP-seq data revealed allele-specific binding of

CTCF, withmost of the CTCF-boundDNA fragments align-

ing to the unmethylated alleles (p ¼ 1.2 3 10�11 and p ¼
1.9 3 10�07, respectively, allelic bias tested by binomial

test), and with a weaker ChIP-seq asymmetry underlying

the weaker but significant hap-ASM for rs12975442

(Figure S22).

Hap-ASM DMRs and mQTLs Are Enriched in Polymorphic

Binding Sites for a Group of TFs

Allele-specific TF binding occurs at up to 5% of genomic

sites,38 and TF occupancy might play a role in shaping

DNA methylation patterns.39 We therefore asked whether

hap-ASM loci might also be enriched in polymorphic TF

binding sites other than CTCF. We overlapped our data

to all TF canonical motif occurrences in ENCODE data

and found 9,409 informative occurrences. Similar to our

strategy for CTCF, we grouped these TF motifs into three

classes: (A) polymorphic, (B) invariant with CpG sites,

and (C) invariant without CpG. From our Methyl-Seq

data, we found 19 TFs, including MYC and MEF2, with

an enrichment OR R 1.5 among hap-ASM loci

(Figure S23 and Table S11). Overall, hap-ASM was strongly

and significantly enriched in polymorphic motifs of at

least one of these TFs (OR ¼ 2.9, p ¼ 4.9 3 10�7). Support-

ing a role for allele-specific binding of TFs in hap-ASM, four

of these factors—MYC, AP1, CEBPB, and GATA1—can

show methylation-sensitive binding.40–44 In our mQTL

data, among informative TF motif occurrences, we identi-

fied 34 polymorphic TF motifs with an OR > 1.5 in

T cells, 34 in placenta, and 30 in brain TC (Figure S23

and Table S11). Some of these TFs, such as AP1, CREB,

YY1, ZNF143, and ZNF263, are found in each tissue, but

others are more tissue specific. Overall, as shown in

Figure S23, we found strong enrichment of the polymor-

phic motifs of at least one of these TFs among mQTLs in

each tissue (OR ¼ 5.1, p ¼ 8.3 3 10�56 in T cells, OR ¼
4.9, p ¼ 7.1 3 10�40 in placenta, and OR ¼ 3.8, p ¼
1.1 3 10�18 in brain TC). These results were also found

in neurons and glia (Figure S23) and were robust when us-

ing the 500 bp window size. Next, the analysis of net

methylation of the flanking regions of hap-ASM DMRs

that overlap polymorphic TFs motifs (200 bp window)

showed, once again, that that these hap-ASM DMRs were

coincident with low methylated ‘‘wells,’’ although more

heterogeneity is observed compared to CTCF (Figure S24).

To further test allele-specific CTCF and TF binding as a

mechanism for hap-ASM, we estimated the binding likeli-

hood to each allele at polymorphic CTCF and TF motif oc-

currences within 200 bp windows of hap-ASM DMRs,

based on probability weight matrices from ENCODE. As

shown in Figure 6, for CTCF, the difference of PWM score

between alleles was significantly anti-correlated with the

difference of methylation, suggesting that lack of CTCF oc-

cupancy is mostly associated with hypermethylation and

that SNPs with higher disruptive effects are associated

with stronger hap-ASM. For TF polymorphic motif occur-

rences, we identified two sets of TFs, one set for which rela-
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tive hypermethylation was associated with low binding

likelihood, suggesting protection against methylation,

and a set where hypermethylation was associated with

high binding likelihood, suggesting gains of methylation

mediated by TF occupancy (Figure 6).

Cross-species Comparisons of Methylation Patterns Validate the

CTCF Hypothesis and Point to Variation in CTCF Binding Sites as

a Mechanism for Gains and Losses of Hap-ASM in Evolution

As noted above, hap-ASM DMRs are relatively enriched in

non-conserved sequence elements. Capitalizing on this

observation, as an additional test of the CTCF hypothesis,

we used a cross-species approach in which we carried out

targeted bis-seq in PBL and liver from macaque monkeys

at five loci orthologous to human loci with CTCF motifs.

We chose these loci such that the macaque sequences

diverged from human sequences at critical base pairs in

these motifs. As shown in Figures 7, S25, and S26, the re-

sults at each of the five DMRs confirmed the expected

negative correlation between the methylation levels (as

determined by bis-seq) and CTCF binding likelihood (as

indicated by the PWM score) when comparing each hu-

man allele and the monkey alleles.

Chromosomal Regions around Hap-ASM DMRs and

mQTLs Are Enriched in eQTLs

Post-GWAS mapping strategies based on hap-ASM DMRs,

mQTLs, and eQTLs each have technical advantages and

disadvantages, making a combined approach desirable.17

Thus, although the current study is focused on methyl-

ation, we were interested in overlaps of our data with

eQTLs. Based on the eQTL browser, 9% of the hap-ASM re-

gions and 50% of themQTLs in the datasets described here

lie in 150 kb windows that also contain at least one eQTL

(the higher yield of mQTL-eQTL pairs probably reflecting

the gene-centered design of the 450K methylation arrays,

as compared to the more distributed genomic coverage of

Agilent SureSelect Methyl-Seq). Among these parings are

ZFP57, CLECL1, HLA-DRB* (HLA-DRB1 [MIM: 142857],

HLA-DRB6 [MIM: NA]), S100A*, and CCDC155 (MIM ¼
NA). Moreover, using all informative genomic regions as

background, we find that both hap-ASMDMRs andmQTLs

are statistically enriched in eQTLs within 20 kb windows

(OR ¼ 1.4, p ¼ 0.008; OR ¼ 1.6, p ¼ 10�17, respectively).

For mQTLs, the enrichment was higher for eQTLs within

1,000 bp (OR ¼ 2, p ¼ 4.9 3 10�21) and decreased for

more distant eQTLs (OR ¼ 1.2, p ¼ 3.4 3 10�9 for eQTLs

within 150 kb). Similar results were observed in each tis-

sue. Likewise, the enrichment in eQTLs among hap-ASM

regions was no longer significant overall after a distance

of 40 kb. Thus, hap-ASMmapping can be a useful approach

for identifying candidate genes affected by disease-associ-

ated genetic polymorphisms, especially when multiple

distant SNPs, in linkage disequilibrium, are identified as

GWAS signals. Importantly, enrichment analysis does not

exclude specific instances in which the gene being regu-

lated lies at a greater distance, such as when the key regu-

latory element is an insulator or enhancer, so to avoid
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Figure 6. Methylation Differences be-
tween Alleles at Hap-ASM Loci Correlate
with CTCF and TF Binding Likelihoods
(A) The graph shows methylation differ-
ences between alleles as a function of
CTCF binding likelihood difference, esti-
mated by PWM (position weight matrix)
scores, and averaged across all hap-ASM re-
gions within 5100 bp of a polymorphic
CTCFmotif occurrence. A significant nega-
tive correlation between methylation
difference and CTCF binding likelihood is
observed.
(B) CTCF acts as insulator and barrier
element by blocking the spread of hetero-
chromatin and CpG methylation. Genetic
polymorphism in CTCF binding sites allow
hypermethylation on the allele with lower
or absent occupancy.
(C) The graph shows methylation differ-
ences between alleles as a function of TF
binding likelihood difference, estimated
by PWM scores, and averaged across all
hap-ASM regions within 5100 bp of a
polymorphic TF motif occurrences. Two
subsets of TFs are observed: one with a sig-
nificant negative correlation between
methylation difference and TF binding
likelihood difference (black circle) and
one with a significant positive correlation
(white circle).
(D) These results can be explained by
postulating one class of TFs for which
binding site occupancy is associated
with demethylation of DNA and another
class of TFs where binding is associated
with gains of methylation. For these two
classes of TF, disruption of their binding
motifs by sequence polymorphisms is
therefore associated with allele-specific
DNA hypermethylation or hypomethyla-
tion, respectively.
missing such instances we used relatively large 150 kb win-

dows here for tabulating and analyzing hap-ASM DMRs

and mQTLs that map near GWAS peaks.
Discussion

These results have basic implications for understanding

mechanisms of genetic-epigenetic interactions and prac-

tical value for validating GWAS peaks and homing in on

causal variants. First considering the latter, identifying

causal SNPs is essential for understanding disease patho-

genesis but statistical associations by themselves cannot

localize these sequences. Also, due to the small effect sizes

of most risk alleles and the stringent significance thresh-

olds necessitated by multiple testing in GWASs, many

true-positive associations, including causal ones, can

show sub-threshold (>5 3 10�8) p values. As we have pro-

posed,3,16,17 a strategy of overlapping hap-ASM/mQTL

data with GWAS data can help to overcome these road-

blocks. A number of recent studies have started to apply

this promising approach,3,4,6–15 but datasets analyzing dis-
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ease-relevant primary human tissues, applying stringent

criteria for hap-ASM and mQTLs, and using independent

methods for validating the genome-wide profiling and

defining the boundaries of DMRs are still sparse.

Here we have presented genome-wide maps of hap-ASM

and mQTLs, focusing mainly on T lymphocytes and cere-

bral cortical brain tissue, including FANS-isolated neurons

and glia, as well as a smaller set of term placentas. Key tech-

nical aspects of our study include (1) cell-type-specific

profiling of both hap-ASM and mQTLs, leading to an

increased net yield of disease-associated loci, (2) deep

long-read Nextgen sequencing to maximize the yield of

bona fide hap-ASM DMRs, (3) a definition of mQTLs based

not only on p values but also on correlation coefficients

and strength of the methylation asymmetry, and (4) inde-

pendent validations of a diverse subset of the implicated

regions by targeted bisulfite sequencing—with the high

validation rate supporting the accuracy of our genome-

wide datasets. The importance of defining mQTLs based

not only on p values but also on correlation coefficients

and strength of the methylation asymmetry is highlighted

by our bis-seq data in Figure S27, which show that some
erican Journal of Human Genetics 98, 934–955, May 5, 2016 947



Figure 7. Comparison of Human and
Macaque Methylation Patterns Supports
the Correlation between Allele-Specific
CTCF Binding Likelihood and Hap-ASM
(A)Map and graphs of netmethylation in a
30 kb window containing a hap-ASMDMR
encompassing SNP rs117902864. This SNP
is relatively uncommon (minor allele fre-
quency ¼ 3%) and its detection in the
only heterozygous T cell sample confirms
the usefulness of the Methyl-Seq approach
to identify rare hap-ASM DMRs. The hap-
ASM overlaps a polymorphic CTCF bind-
ing site, in which the rare allele reduces
binding likelihood (PWM score). Net me-
thylation in homozygous samples showed
that the DMR is located in a low-methyl-
ated region surrounded by high-methyl-
ated shoulders. The single heterozygous
sample shows hypermethylation, consis-
tent with a role for CTCF binding in main-
taining the low-methylation level. GWAS
significance levels are: rs6558578, HPV cer-
vical cancer, p¼ 7.003 10�06; rs13263558,
weight/body mass/obesity-related (obesity
[MIM: 601665]) traits, p ¼ 3.00 3 10�06;
rs2235121, bipolar disorder and schizo-
phrenia, p ¼ 8.00 3 10�06.
(B) The sequence of the CTCF motif is
shown for each human allele and for
Macaca mulatta. The methylated allele
(allele B) is associated with lower PWM
score than allele A. No SNP is present in
the CTCFmotif instance inMacaca mulatta

(rectangle). The macaque sequence differs from the human reference allele by one nucleotide (bold and underlined nucleotide), but this
change does not alter CTCF binding likelihood. Sanger bis-seq of this region in PBL from two monkeys shows low methylation levels,
similar to the methylation level observed in allele A in human T cells. Methylation data were obtained by MiSEQ for human and Sanger
sequencing for macaque. Additional hap-ASM loci analyzed by this type of cross-species comparison are in Figures S25 and S26. Abbre-
viations are as follows: PWM, position weight matrix; A, reference allele; B, alternate allele.
candidate mQTLs from a prior study15 that relied solely on

statistical significance and therefore harvested a very large

number of candidates (>10,000) are actually false posi-

tives. Nonetheless, our data validate a substantial group

of loci from that study. Most importantly, our review of

the prior studies8,10,12,13,15 shows that more than half of

the hap-ASM loci andmQTLs that we report here are newly

discovered regions. Hap-ASMmapping requires both infor-

mative SNPs and CpGs, and we have shown that using our

two complementary approaches increases the yield of

identified regions. This seems to be true for other methods

as well: using methyl-sensitive SNP array analysis (MSNP),

we previously identified and fine mapped the DMRs for

two novel examples of imprinted ASM and four hap-ASM

loci.3,14 Of these, the imprinted region in VTRNA2-1 was

informative in our Agilent Methyl-Seq data and the hap-

ASM region in CYP2A7 was queried here by the 450K Illu-

mina methylation Beadchips, with these loci confirmed as

ASM and mQTL, respectively. Likewise, Hutchinson et al.

used MSNP to identify four hap-ASM loci.7 None of them

were informatively queried in our Methyl-Seq data and

only one weak hap-ASM region (rs713875, difference be-

tween allele ¼ 0.03) was queried by our methylation array

data, which showed a subthreshold mQTL (difference be-
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tween allele ¼ 0.1, R2 ¼ 0.4, q value ¼ 6 3 10�05). In the

future, deep whole-genome bisulfite sequencing with

long reads is expected to add further information.
Supra- and Sub-threshold GWAS Peaks for which

mQTL and Hap-ASM Mapping Supports Biological

Relevance

Regarding the loci in which our findings help to promote

GWAS signals to biological true positives, the gene lists

are in Tables S4 and S6–S10 and examples are in Table 1.

Methyl-Seq, but not the mQTL approach, can score hap-

ASM in single heterozygous samples and thereby identify

hap-ASM regions associated with rare SNPs. An interesting

example is provided by the hap-ASM DMR that we de-

tected between KBTBD11 (MIM: NA) and MYOM2 (MIM:

603509) on chromosome 8, for which we show maps

and Methyl-Seq data in Figure 7. This DMR has strong

hap-ASM in T cells and is situated close to a sub-threshold

GWAS signal (p ¼ 7.0 3 10�6) for susceptibility or resis-

tance to HPV-associated cervical cancers (cervical cancer

[MIM: 603956]).45 The index SNP is rare (~1%MAF), which

explains why this potentially important locus was detected

in our hap-ASM data, but not in our screen for mQTLs.
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Considering the other loci linked to immunological

traits, multiple SNPs near the DMR tagged by SNP

rs12304510 on chromosome 12 are associated with multi-

ple sclerosis and type I diabetes.46–48 Supporting the bio-

logical relevance of this DMR, the genes in this window,

CLECL1, CD69 (MIM: 107273), and CLEC2D (MIM:

605659), are expressed in hematopoietic cells and involved

in T cell function.49–51 Likewise, IRF1 encodes a transcrip-

tion factor that induces type I interferon and IL-27 produc-

tion and is involved in Th17 cell differentiation, which

play a critical role in autoimmune inflammation and viral

infection.52,53 The IRF1-linked hap-ASM DMR, which

is stronger and more consistent in T cells than in brain (Ta-

ble 1 and Figure 4), is located within 75 kb of GWAS SNPs

associated with Crohn disease and asthma (asthma, bron-

chial [MIM: 600807]).54–58 Also relevant to an important

immunological phenotype, a GWAS SNP (rs1473500)

located ~15 kb from the T-cell-specific hap-ASM DMR

that we identified next to FRMD1 on chromosome 6 was

associated with secreted IL-2 in response to smallpox

vaccine.59 Here our supportive epigenetic data are particu-

larly useful, because the GWAS signal was sub-threshold

(3 3 10�7). Another example is the S100A* gene cluster

and its associated hap-ASM DMR, which is also close to

ILF2 (MIM: 603181), encoding a subunit of nuclear

factor of activated T cells (NFAT) that regulates IL-2 ex-

pression.60 There is a sub-threshold GWAS signal (p ¼
4.0 3 10�06) for susceptibility to multiple myeloma

(MIM: 254500) in this region, and our identification of a

strong hap-ASM DMR within 50 kb of the GWAS peak

helps to nominate this signal to a biological true positive,

as well as raising the possibility of a role for S100A* or

ILF2 in immune surveillance against multiple myeloma.

Another group of hap-ASM DMRs is relevant to both

immunological and neurological phenotypes. The HLA-

DR* genes encode class II histocompatibility molecules

expressed by antigen-presenting cells, and genetic variants

in these genes are associated with autoimmune disor-

ders.48,61,62 However, there have also been reports of

genetic associations of HLA-DR genes with neurological

disorders including schizophrenia63 and AD64 and there is

evidence suggesting a role for histocompatibility antigens

in neuronal connectivity and synaptic plasticity.65,66

A challenge in interpreting statistical associations in the

HLA region is the LD structure, which makes it difficult to

conclude that a disease-associated SNP is causal and not

simply associated with a causal SNP several kb away. As

shown in Figures 2 and S15, we have identified a hap-ASM

DMR in HLA-DRB6, which remarkably is quite strong in

brain samples while showing much weaker and less

frequent allelic asymmetry in T cells. Thus, our hap-ASM

data point to the CTCF-bound insulator element in the

HLA-DRB6 as a candidate for the causal regulatory element

underlying the AD associations64 in this genomic region.

A recent study of 447 AD-affected brains and 293 control

brains using 450K methylation arrays found that net DNA

methylation inHLA-DR* genes is associatedwith late-onset
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AD, with a statistical significance for the global association

at the locus level, butwith associationsnotpassingmultiple

testing correction at the individual CpG level.32 Based on

our data, we propose that this result does not reflect altered

DNAmethylation due to pathological changes in AD brain

tissue, but rather is an indication of HLA-DR* as a suscepti-

bility locus for this disease. Because of the hap-ASM in this

region, this genetic susceptibility will manifest as small

methylationdifferences between cases and controls in large

450K array-based methylation studies. In fact, one of the

AD EWAS-associated CpGs in this region (Illumina ID

cg13972202) was identified as an mQTL in our dataset (Ta-

ble S12), and theother one is a SNP.Another gene associated

withADsusceptibilitywhereweobservedhap-ASM inbrain

is CELF2 (MIM: 602538) (Figure S17). GWAS associations

between SNPs in this gene and late-onset ADwere reported

in APOE ε4 (MIM: 107741) homozygotes, and in vivo data

from mice suggest that CELF2/CUGBP2, an RNA-binding

protein, is involved in apoptosis in hippocampal neu-

rons.67–69

Another example in this group of loci is the hap-ASM

DMR upstream of NGFR on chromosome 17. This gene co-

des for the nerve growth factor receptor, which binds NGF

and promotes neuronal survival, but this receptor is also

expressed in T lymphocytes, for which NGF is mito-

genic.70 As shown in Figure S7, SNPs very close to the

NGFR-linked hap-ASM DMR show near-threshold

statistical associations not only with bipolar disorder, a

brain-related phenotype, but also with a T-cell-related

phenotype, the immune response to smallpox vac-

cine.59,71 With regard to the other hap-ASM DMRs near

GWAS peaks for neurological disorders, CMTM8 is one

of several chemokine-like factor genes located in a cluster

on chromosome 3. This gene is expressed in brain, but its

biological role is not yet known. The CMTM8 hap-ASM

DMR coincides with an intra-genic regulatory region

marked by PRC2 occupancy in brain cells but not in

T cells, and the strength of the allelic asymmetry is stron-

ger in brain (Figure S13). GWAS SNPs associated with bi-

polar disorder and alcohol dependence (MIM: 103780),

both sub-threshold, are within 15 kb of this DMR

(Figure S13), so the epigenetic data help to promote this

locus to a biological true positive. Likewise, MYT1L,

Myelin Transcription Factor 1-Like, codes for a neural-spe-

cific TF expressed in fetal and adult brain. Deletions in

chromosome band 2p25.3 suggest a role of this gene in

intellectual disability72 and a GWAS SNP in MYT1L has

been associated, at near-threshold significance, with

response to antipsychotic treatment.73 The hap-ASM

DMR in this gene overlaps with polymorphic MYC and

CTCF motifs and is located 65 kb from this GWAS signal

(Figure S10). A fourth interesting example, albeit with

weaker and less frequent hap-ASM, is PTPRN2 (MIM:

601698), which has been provisionally associated with bi-

polar disorder, schizophrenia (SCZD [MIM: 181500]),

cocaine dependence, and depression (MDD [MIM:

608516])74,75 (Figure S14).
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Lastly, published GWASs for placenta-related traits such

as intrauterine growth restriction, preeclampsia (PEE1

[MIM: 189800]), and premature birth are sparse to date

and, probably for this reason, we did not find GWAS/

mQTL overlaps for these conditions. Placentas are rela-

tively under-represented in our current series, so antici-

pating such future GWASs, we are now collaborating

with other investigators to expand the placenta data.

Special Implications of Hap-ASM in ZFP57

Relevant both to disease associations and more generally

to epigenetic gene regulation, the strong hap-ASM DMR

that we identified in ZFP57 is of particular interest.

ZFP57 is located on chromosome 6 in the HLA region

and encodes a TF that acts in trans to regulate genomic

imprinting.26,27 ZFP57 recruits DNMT1 and DNMT3a

through its interaction with KAP1/TRIM28 and is thus

required for acquisition and/or maintenance of a subset

of DNA methylation imprints.76 Loss of imprinting in

several syndromes, particularly transient neonatal diabetes

mellitus type 1, can be associated with mutations in

ZFP57.77,78 In addition, since a knockout of this gene in

mice led to defects in cardiac development,79 our finding

of hap-ASM upstream of this gene suggests that it might

be fruitful to test for associations of ZFP57 haplotypes

with human congenital heart defects (HDCA [MIM:

600001]). More broadly, our findings raise the possibility

that some associations of non-coding SNPs in the HLA

region with complex phenotypes might reflect not only

altered expression of histocompatibility antigens, but

also haplotype-dependent expression of ZFP57, mediated

by or stabilized by hap-ASM, and possibly resulting in

altered expression of imprinted genes.

Mechanisms of Hap-ASM: CTCF Sites, TF Sites, and

Chromatin States

For several loci we carried out fine-mapping to define the

boundaries of hap-ASM DMRs, a step that is crucial for

testing mechanistic hypotheses. Overall, the results high-

light a role for genetic variation in CTCF and TF binding

sites as a mechanism underlying hap-ASM and mQTLs.

Insulators act to establish chromatin loops, which can

separate enhancers from promoters and block the spread

of heterochromatin.80 CTCF is a zinc-finger protein that

is a key component of the insulator complex that anchors

these loops.81 At some imprinted loci, CTCF binding to

DMRs is DNA methylation sensitive, thereby enforcing

allele-specific expression of the imprinted genes,82 and

CTCF binding is also implicated in the formation or main-

tenance of low methylated regions.83 We previously docu-

mented several examples of genes with hap-ASM in which

the differentially methylated regions (DMRs) are discrete

in size (~2 kb) and precisely overlap with binding sites

for CTCF,14 and we proposed a mechanism in which

sequence polymorphisms in CTCF binding sites reduce

or abrogate CTCF binding in a haplotype-dependent

manner and lead to preferential CpG methylation on the
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unoccupied or less occupied allele.14,17 Our bioinformatic

analyses presented here, showing enrichment for polymor-

phic CTCF binding sites in hap-ASM/mQTL regions, and

our cross-species comparisons strongly support this model.

In addition, we found an overall enrichment for CTCF

ChIP-seq peaks overlapping with hap-ASM DMRs, some

of them without known or polymorphic motif instances.

For one of these hap-ASM regions, FRMD1, we have shown

that a combination of SNPs, all encompassed in a 450 bp

segment of DNA, together determine the presence or

absence of ASM. So, the simplest mechanistic possibility,

which can be tested in future work, is that binding of

CTCF-associated accessory factors might be influenced by

these sequence variants, thus leading to allele-specific

CTCF site occupancy and thereby allele-specific protection

from CpGmethylation, even though the CTCF site itself is

not polymorphic. In addition to our model in which

altered CTCF binding leads to hap-ASM, in principle at

some loci hap-ASM could ‘‘come first,’’ followed by allele-

specific CTCF binding. We did not find enrichment in

invariant CpG-containing CTCF binding sites among

hap-ASM loci, but we did find examples of such loci. There-

fore, it might be interesting to ask, in future studies,

whether hap-ASM at invariant CpG-containing CTCF

binding sites can be a primary cause of allele-specific bind-

ing of CTCF.

The polymorphic binding site model can also be made

more general: allele-specific transcription factor (TF) bind-

ing can occur in up to 5% of the human genome,38,84

changes in TF binding site occupancy can be responsible

for active or passive demethylation of DNA,39,83 and, for

special TFs such as Pu.1, can mediate gains of methylation

through interaction with DNMTs.85 That polymorphisms

in TF binding sequences can lead to hap-ASMhas been sug-

gested by a recent study using lymphoblastoid cells lines.37

Taken together, our genome-wide, locus-specific, and

cross-species data support both the CTCF-based and

TF-based mechanisms, both for hap-ASM DMRs and for

mQTLs, and in multiple disease-relevant human tissues

and cell types. These results in turn provide a mecha-

nism-based rationale for the strategy of using maps of

hap-ASM and mQTLs for identifying pathogenic variants

in disease-linked regulatory sequences.

Although polymorphic CTCF binding sites are enriched

among hap-ASM DMRs and mQTLs, Tables S4 and S6–S10

show that they still account for only a minority of such

loci. In this regard, our findings regarding chromatin states

might be relevant. Those analyses point to allele-specific

H3K9 methyltransferase recruitment and PRC2 binding

as possible additional mechanisms. Regarding the H3K9

mark, zinc finger protein genes of the repetitive class

constitute a super family of genes that form large hetero-

chromatin regions targeted by H3K9 methyltransferase,

SUV39H1.86 SUV39H1 binds indirectly to DNA through

the interaction between KRAB domain-containing pro-

teins and KAP1 and recruits DNAmethyltransferase to spe-

cific genomic sequences, inducing long-range repression
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through heterochromatin spread. In addition, one third of

the ZNF proteins contain a KRAB domain and some have

been shown to interact with KAP1, suggesting auto-regula-

tory loops.87 Our TF motif analyses found enrichment in

sites for several ZNF TFs, suggesting the disruption of

KRAB-ZNF binding sites as a potential mechanism for

hap-ASM. Likewise, poised chromatin is associated with

genes regulated by the PRC2 complex, which is implicated

in allele-specific chromatin repression at imprinted loci,

and cross-talk between DNA methylation and the

H3K27me3 histone mark in chromosomal regions bound

by PRC2 has been described.88–90 Although the sequences

that recruit PRC2 in humans have not been identified,

accumulating evidence supports a role for cis-regulatory se-

quences through interactions with recruitment factors,91

and allele-specific binding of such accessory factors could

explain our findings.

Gains and Losses of Hap-ASM in Species Divergence

Although we examined a small set of macaque loci, our

data from comparing CTCF binding site sequences and

CpG methylation patterns in human and macaques sug-

gest an interesting line of future work on the possible

role of hap-ASM in species divergence. In particular, the

fact that CTCF binding likelihood tracks with methylation

levels at non-conserved binding sites in macaques and hu-

mans suggests the possibility that evolution at such loci

could account for differences in epigenetic patterning,

chromatin organization, and phenotypic traits among pri-

mates. In fact, in our genome-wide analysis, only 20% of

the polymorphic CTCF binding sites associated with hap-

ASMwere conserved at the sequence level between human

and macaque, a result that is consistent with the general

under-representation of evolutionarily conserved elements

that we found among hap-ASM loci in humans, similar to

what has also been described for eQTLs.92

Implications of Variable Hap-ASM among Individuals

We identified not only numerous tissue-restricted mQTLs

and hap-ASM DMRs, but also hap-ASM DMRs that are

present in some individuals but not others with the same

genotype at the index SNP. Both in our Methyl-Seq data

(Table S4) and among the loci that we chose for targeted

bis-seq (Table 1), this finding of individual variation of

hap-ASM is the rule rather than the exception. As we

have demonstrated for hap-ASM in the FRMD1 region,

the combined effects of several SNPs in an extended haplo-

type, only partially captured by genotyping the index SNP,

can explain some examples this variability (Figure S11).

However, another possibility is that some haplotypes

might be permissive for hap-ASM in heterozygotes only

under certain environmental conditions. Altered CpG

methylation patterns have been associated with diverse

environmental factors,93 and future large-scale genetic

epidemiological and twin studies might reveal whether in-

dividual-restricted hap-ASM could be capturing some of

these gene-environment interactions.
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Zeesman, S., Bang, B., Béna, F., Bockaert, N., Bongers, E.M.,

et al. (2015). Refinement of the critical 2p25.3 deletion region:

the role of MYT1L in intellectual disability and obesity. Genet.

Med. 17, 460–466.

73. Adkins, D.E., Aberg, K., McClay, J.L., Bukszár, J., Zhao, Z., Jia, P.,

Stroup, T.S., Perkins, D., McEvoy, J.P., Lieberman, J.A., et al.

(2011). Genomewide pharmacogenomic study of metabolic

side effects to antipsychoticdrugs.Mol. Psychiatry16, 321–332.

74. Curtis, D., Vine, A.E., McQuillin, A., Bass, N.J., Pereira, A., Kan-

daswamy, R., Lawrence, J., Anjorin, A., Choudhury, K., Datta,

S.R., et al. (2011). Case-case genome-wide association analysis
954 The American Journal of Human Genetics 98, 934–955, May 5, 2
shows markers differentially associated with schizophrenia

and bipolar disorder and implicates calcium channel genes.

Psychiatr. Genet. 21, 1–4.

75. Yang, B.Z., Han, S., Kranzler, H.R., Farrer, L.A., andGelernter, J.

(2011). A genomewide linkage scan of cocaine dependence

and major depressive episode in two populations. Neuropsy-

chopharmacology 36, 2422–2430.

76. Zuo, X., Sheng, J., Lau, H.T., McDonald, C.M., Andrade, M.,

Cullen, D.E., Bell, F.T., Iacovino, M., Kyba, M., Xu, G., and

Li, X. (2012). Zinc finger protein ZFP57 requires its co-factor

to recruit DNA methyltransferases and maintains DNA

methylation imprint in embryonic stem cells via its tran-

scriptional repression domain. J. Biol. Chem. 287, 2107–

2118.

77. Boonen, S.E., Mackay, D.J., Hahnemann, J.M., Docherty, L.,

Grønskov, K., Lehmann, A., Larsen, L.G., Haemers, A.P., Kock-

aerts, Y., Dooms, L., et al. (2013). Transient neonatal diabetes,

ZFP57, and hypomethylation of multiple imprinted loci:

a detailed follow-up. Diabetes Care 36, 505–512.

78. Baglivo, I., Esposito, S., De Cesare, L., Sparago, A., Anvar, Z.,

Riso, V., Cammisa, M., Fattorusso, R., Grimaldi, G., Riccio,

A., and Pedone, P.V. (2013). Genetic and epigenetic mutations

affect the DNA binding capability of human ZFP57 in tran-

sient neonatal diabetes type 1. FEBS Lett. 587, 1474–1481.

79. Shamis, Y., Cullen, D.E., Liu, L., Yang, G., Ng, S.F., Xiao, L.,

Bell, F.T., Ray, C., Takikawa, S., Moskowitz, I.P., et al. (2015).

Maternal and zygotic Zfp57 modulate NOTCH signaling in

cardiac development. Proc. Natl. Acad. Sci. USA 112, E2020–

E2029.

80. Burgess-Beusse, B., Farrell, C., Gaszner, M., Litt, M., Mutskov,

V., Recillas-Targa, F., Simpson, M., West, A., and Felsenfeld,

G. (2002). The insulation of genes from external enhancers

and silencing chromatin. Proc. Natl. Acad. Sci. USA 99 (Suppl

4 ), 16433–16437.

81. Ong, C.T., and Corces, V.G. (2014). CTCF: an architectural

protein bridging genome topology and function. Nat. Rev.

Genet. 15, 234–246.

82. Bell, A.C., and Felsenfeld, G. (2000). Methylation of a CTCF-

dependent boundary controls imprinted expression of the

Igf2 gene. Nature 405, 482–485.

83. Feldmann, A., Ivanek, R., Murr, R., Gaidatzis, D., Burger, L.,
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